

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Landscape Analysis – Part 1: *Fragmentation & Landscape Geometry*

Instructor: John Fay

Overview

- From habitat to habitat patches (Demo)
- Patch geometry
 - FRAGSTATS (Demo)
 - ArcMap (Demo)
 - Area, perimeter, thickness, shape index, core area
 - Average nearest neighbors

Habitat and Habitat Patch maps

<u>Continuous</u>: Pronghorn habitat suitability (0.0-1.0)

<u>Binary</u>: Separates pixels into suitable and non-suitable classes

habitat cells are grouped and given a unique ID

Patch attribution/prioritization

<u>Patch ID 102010</u>

- Area 450 HA
 - Cost \$250k
- Core-area ratio 0.82
 - Threat idx. 0.24
- Biodiversity idx. 0.03
- Betweenness idx. 0.478

Ecosys. svc. idx. 0.850 TOTAL SCORE 0.227

Quantitative score used to rank against other patches

Patch Geometry Metrics

- Properties of the <u>size</u> and <u>shape</u> of a habitat patch that may affect its conservation value...
 - Area
 - Perimeter
 - Thickness
 - Shape complexity
 - Percent of area that's core (core-area ratio)
 - Dispersion vs. clumpiness of patches*

* Property of a landscape, not a single patch...

Assignment: Compute metrics

- A table of the **summary statistics** (min, max, mean, std. deviation) of:
 - ✓ patch area,
 - ✓ perimeter,
 - ✓ shape index, &
 - ✓ edge-area ratios

... for the set of pronghorn habitat patches within the study area.

Also include columns for the same or similar measures (if they exist) from the FRAGSTATS outputs.

 An X-Y scatterplot of FRAGSTATS computed perimeter –area ratio (PARA) against Shape Index, calculated in ArcGIS.

Assignment: Compute metrics

Shape index vs. Perimeter-Area ratio

Constructing Habitat/Habitat Patches

- Species Distribution Model \rightarrow Habitat
 - Which threshold to use?
- Habitat → Habitat Patches
 - 'RegionGroup' tool...
- Removing tiny patches
 - May be "noise"
 - Might not be large enough to be useful

Zonal Geometry (ArcGIS)

- Area
- Perimeter
- Thickness
- Centroid

Forest polygon

Elliptical characteristics

7

▦	III Attributes of Patch_centrd								
	ObjectID	Value	Count	Majoraxis	Minoraxis	Orientation			
	0	1	1	551.24157714	205.2805328	152.723114013672			
	1	2	1	16.925687789	16.92568778	90			
E	2	3	1	92.031661987	74.70791625	135			
	3	4	1	283.90103149	168.5163879	74.2899703979492			
	4	5	1	33.851375579	16.92568778	90			
	5	6	1	391.35882568	157.3823242	167.515258789063			
	6	7	1	16.925687789	16.92568778	90			
	7	8	1	61.237712860	23.39072418	95.1524200439453			
	8	9	1	360.04232788	209.2641448	160.938064575195			
	9	10	1	53.842014312	42.56584930	45			
	10	11	1	208.74642944	123.5139770	88.9923095703125			
	11	12	1	165.79930114	89.84900665	65.9140625			
	12	13	1	38.582225799	22.27545738	45			
	13	14	1	165.03775024	74.64105987	70.0033569335938			
	14	15	1	442.65081787	311.2980957	7.52797937393188			
Record: II I Show: All Selected Records (0 out of 2583 Selected.)									

Shape Index

Shape index compares a patch's perimeter to the perimeter of a square with area the same as that patch's.

shape index
$$= rac{p_{patch}}{p_{min}}$$

The smallest perimeter occurs when the shape is at its most compact, i.e. a *square*.

 p_{min} for a square of area A = 4 (\sqrt{A}), so

shape index =
$$\frac{p_{patch}}{4(\sqrt{A})}$$

$$P = 4*s$$

$$A = s^{2}; s = \sqrt{A}$$

$$P = 4(\sqrt{A})$$

Shape Index

As values get larger, the shape is more complex (less compact)...

Area = **25** Perimeter = **60**

Shape index = 60 / 4 (√25) = 3

Area = **25** Length of on side = **5** Perimeter = 4*5 = **20**

Shape index = $4(\sqrt{25}) / 20$ = 1.00 If pronghorn tend to avoid habitat that is within 200 m of an edge, how much of a habitat patch's area is actually available to them.

- Identify cells within 200 m of the edge.
- Exclude these areas from the forest patches.

Habitat patch

Distance from edge

Core

Cells > 200m from edge = Core

* Use a mask to set non-patch areas to No Data in result...

Spatial distribution

FRAGSTATS

	UMass Landscape Ecology Eat	AND
Home About	People Publications Presentations Research Teaching	Opportunities
FRAGSTATS	FRAGSTATS: Spatial Pattern Analysis Program	Quicklinks
FRAGSTATS	for Categorical Maps	NALCC
Documentation	Home Page	FRAGSTATS
FRAGSTATS Downloads	What is FRAGSTATS?	CAPS
FRAGSTATS FAQ	FRAGSTATS is a computer software program designed to compute a wide variety of landscape metrics for categorical map patterns. The original software (version 2) was released in the public domain during	HABIT@
FRAGSTATS Links	1995 in association with the publication of a USDA Forest Service General Technical Report (McGarigal and Marks 1995).	RMLands
FRAGSTATS	Since then, hundreds of professionals have enjoyed the use of FRAGSTATS. Due to its popularity, the program was completely revamped in 2002 (version 3.3). Recently, the program was upgraded to	Vernal pools
Workshops	accommodate ArcGIS10.x. The program is currently undergoing a major revamping, which will result in the release of version 4.0 early in 2012. Version 4.0 has a completely redisigned architecture and is	Fire
	designed to support the addition of cell-level metrics and surface pattern metrics, among other things. Version 4.0 has essentially the same functionality as version 3 x, but with a new user interface that reflects	Shortcourses
	the redesign of the model architecture, and is simply a stop-gap release for individuals that work with ArcGIS10.x. We expect to release additional versions (e.g., 4.1 and so on) shortly thereafter that incorporate new features	choreouises

http://www.umass.edu/landeco/research/fragstats/fragstats.html

FRAGSTATS

y unnamed1 File Analysis Help		
Help Contents	Select input dataset	
New Open () About Input layers Anarysis parameters Batch management Layers	Data type selection Library Data type built-in algorithm Raw ASCII grid built-in algorithm Raw 8-bit integer grid built-in algorithm Raw 16-bit integer gri built-in algorithm Raw 32-bit integer gri built-in algorithm ESRI grid III III	Input a dataset of type ESRI grid [built-in algorithm] Dataset name: NV761\Exercise4_Prep\Data\Ex4_resu ts\patches Row count (y) : 1628 Background value : 999 Column count (x) : 1731 Cell size : 90.000 OK Cancel
Class descriptors Edge depth Use fixed d	Browse Browse epth 200.00	Input layers Analysis parameters Neighbor rule Image: A cell rule 4 cell rule 8 cell rule Automatically save results "ragstats\HabPatch Image: Automatically save results "Image: Automatically save results" Image: Automatically save results "Image: Automatically save results" Image: Automatically save results Image: Automatically save results" Image: Automatically save results Image: Automatically save results" Image: Automatically save results Image: Automatically save results"

Patch Metrics (no class level or landscape level deviations):

- <u>Area</u> Edge: Patch Area, Patch Perimeter
- <u>Shape</u>: Perimeter-Area Ratio, Shape Index
- <u>Core Area</u>: Core Area, Number of Core Areas, Core Area Index.

Class Metrics

• None – why??

Landscape Metrics (no distribution statistics):

- <u>Area Edge</u>: Total Area, Largest Patch Index, Total Edge, Edge Density
- <u>Core Area</u>: Total Core Area, Number of Disjunct Core Areas

FRAGSTATS

Save and Run scenario...

Can take several minutes to calculate

Patch metrics results:

- 1. Rename "____.patch" to "____.csv"
- 2. Open csv file in Excel (or Notepad ++)
- 3. Find & Replace "cls_" with empty string
- 4. Open in ArcMap, Copy Rows to new table
- 5. Use 'TYPE' attribute to link with habitat patch features

Landscape Prioritization

- Patch geometry gives us <u>one</u> approach to prioritizing some habitat patches over others for conservation.
- Other prioritization schemes include:
 - Level of threat/likelihood of persistence
 - Biodiversity co-benefits
 - Patch connectivity
 - Ecosystem services co-benefits

These are what we'll be looking at in the coming weeks...