ENV761 Geospatial Analysis for Conservation & Management

Landscape Prioritization:

Connectivity Analysis

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

Patch attributes

- Patch size, shape, and distribution
 Area, compactness, core:area ratio
- Patch corridors and connectivity

 Least cost paths; corridors; and effective proximity
- Patch sensitivity and proximity to threats/stresses
 - Mapping threat density and magnitude

Habitat and Habitat Patch maps

<u>Continuous</u>: Pronghorn habitat suitability (0.0-1.0)

Binary: Separates pixels into suitable and non-suitable classes

<u>Nominal</u>: Clusters of connected habitat cells are grouped and given a unique ID

Landscape Prioritization: Connectivity

How to prioritize?

Connectivity

- Individuals may migrate beyond habitat boundaries.
- Habitat patches within the distance an individual is likely to travel are <u>functionally connected.</u>

• The set of functionally connected patches make up a <u>patch subnetwork.</u>

Connectivity Analysis: Requirements

- Habitat patch dataset...
- Data on how far individuals are likely to venture outside of habitat...

I. Distance to Source Patch

What patches are connected to an area of particular importance*?

- Existing protected area...
- Known breeding ground...

II. Least-Cost Paths to Source Patch

Useful for ranking *non*-habitat...

III. Corridors

Range of accumulative cost between two patches...

Allows for the determination of a swath of cells below a threshold cost distance – i.e. a corridor...

IV. Patch Subnetworks – Resource pools

Resource pools

Subnetwork A = a + b + c + d

Subnetwork B = e + f + g

IV. Patch Subnetworks - Centrality

Subnetwork Patch Attributes

- •Which patch gets the most traffic?
- •Which patch is most vital to maintaining the integrity of the patch subnetwork?

Connectivity Analyses

- 1. Connectivity to source patch
- 2. Least cost paths to source patch
- 3. Patch Corridors
- 4. Patch Sub-Networks
 - Resource pools
 - Patch centrality

In class demonstration... (too complicated!)

Step 2: Resistance Surfaces

- How far might an antelope travel outside its habitat?
 - Uniform cost \rightarrow Euclidean Distance
 - Variable cost \rightarrow Cost Distance

Step 2: Resistance Surfaces

Step 2: Resistance Surfaces

Cost Distance to Source Patch

- Isolate source patch (Con or Set Null)
- Euclidean/Cost distance from source
- Zonal statistics on other patches

 Which zonal statistic??
- Identify patches below threshold as connected to source patch...

Cost Distance to Source Patch

Ⅲ MinDistTo76 ×						
Field: 📰 Add 🐺 Delete 📰 Calculate 🛛 Selection: 🕂 Zo						
⊿ OBJECTID	VALUE	COUNT	AREA	MIN 👻		
332	332	40	324000	1899872.125		
324	324	55	445500	1766626.375		
339	339	43	348300	1736740		
331	331	40	324000	1731779.625		
345	345	43	348300	1615113.875		
340	340	55	445500	1568470 375		

Patch 332 is furthest from patch 76 (~190k cost units)

Least-Cost Path to Source: Cost Path Tool

- Uses <u>cost distance</u> and <u>cost backlink</u> layers to find least cost paths from patch to source
- Results (cell values):
 - 1 \rightarrow LCP at Source
 - 2 \rightarrow Shared LCP
 - 3+ \rightarrow Individual LCP

Cost backlink \rightarrow Flow Direction

Using <u>Stream Order</u> to classify how much 'traffic' a least-cost path might get...

Patch Corridors

Patch Subnetworks

- Calculate distances to all cleaned patches

 Euclidean or cost-weighted
- Apply threshold to cost distance
 <u>One-half</u> the distance an individual can travel
- Region group result into sub-networks

Patch Subnetworks

 Combine subnetworks with patches to create a look-up table listing which patches belong to which subnetwork...

Assignment

SHORT LAB: Connectivity analysis				
NetID				
Score:				
		1. Enter the number of boundary cleaned patches within 100k cost units of patch 195.		
		2a. Which patch is furthest, cost-wise, from patch 195?		
		2b. What is the cost to get from this patch back to patch 195? (Round to the nearest thousand cost unit)		
		3a. Create a map showing least cost paths (vector) to patch 195. Indicate the segment with the "highest traffic".		
		3b. How many least cost paths to patch 195 travel through the segment with the highest traffic?		
		4a. Create a map of the corridor between patch 76 and patch 195 thresholded at 300,000 cost units. Be sure to include a legend.		
		4b. How many patches occur within the corridor (defined as cost < 300,000) between patch 76 and 195.		
		5a. Create a map of functionally connected patch subnetworks (40,000 cost unit threshold)		
		5b. How many distinct subnetworks are created at a cost distance threshold of 40,000?		
		5c. How many square km of habitat is in the subnetwork with the most habitat?		
		5d. How many patches does this subnetwork contain?		

Maps are to check answers only; no need to make them "fancy"...

Demonstration: Patch Centrality

Ranking patches based on their importance at keeping the network intact...

