

Project 3: Species Distribution Modeling

ENVIRON 761

Geospatial Applications for Conservation & Land Management

Approaches

• Expert based mapping

http://www.herpsofnc.org/herps_of_NC/salamanders

Approaches

• Generative / Rule-based mapping

Approaches

• Discriminative/Statistical-based mapping

Our exercise

• Create a habitat map for the pygmy salamander

- Explore what environmental factors influence this species...
- Understand the role GIS plays in modeling species' habitats...

Overview

- Part 1: Preparation & background
- Part 2: Rule based modeling

• Part 3: Statistical modeling using MaxEnt

• Part 4: Model evaluation

Part 1: Data Preparation

- Prepare workspace
- Research species \rightarrow Ecological model
- Generate list of useful layers \rightarrow Data model
- Create GIS database of useful layers...

Step 1.1 → Preparing the workspace

SDM_Exercise.zip

https://duke.box.com/v/761SalamanderLab

Step 1.2 Compile info on species

Desmognathus wrighti

- IUCN: <u>http://www.iucnredlist.org/details/59259/0</u>
- NatureServe Explorer: <u>http://www.natureserve.org/explorer/servlet/NatureServe?searchSciOrCommo</u> <u>nName=Desmognathus+wrighti+&x=10&y=12</u>
- Amphiweb: <u>http://herpsofnc.org/?s=Desmognathus+wrighti</u>
- Crespi, et al (2003): <u>http://onlinelibrary.wiley.com/doi/10.1046/j.1365-294X.2003.01797.x/pdf</u>
- Animal Diversity Web: <u>http://animaldiversity.ummz.umich.edu/accounts/Desmognathus_wrighti/</u>

Step 1.2 Compile info on species

... the ecological model

- It's usually observed between 1600 and 2012 m in elevation, but has been seen as low as 762 m.
- It's often found near spruce fir stands at higher elevations, and mesophytic cove forests at lower elevations.
- While it's entirely terrestrial, 76% of the observations were within 61 m of streams
- It hides under moss, leaf litter, logs, bark, and rocks.
- It hibernates in underground seepages.
- There may be two distinct populations, one northern and one southern

Step 1.3 List relevant environmental layers

... the <u>data</u> model

- It's usually observed between 1600 and 2012 m in elevation, but has been seen as low as 762 m. → Elevation
- It's often found near spruce fir stands at higher elevations, and mesophytic cove forests at lower elevations. → Vegetation/Land Cover
- While it's entirely terrestrial, 76% of the observations were within 61 m of streams
 → Distance to streams
- It hides under moss, leaf litter, logs, bark, and rocks.
- It hibernates in underground seepages.
- There may be two distinct populations, one northern and one southern

 \rightarrow Moisture (from TCI)

Data provided

- Elevation NED 30m DEM
- Land cover NLCD 2006 & SEReGAP Vegetation
- Climate PRISM monthly temperature and rainfall

PRISM data

http://www.prism.oregonstate.edu/

- PRISMdata Metadata prism_maxppt prism_meanppt 🔠 prism_minppt +🏙 prism_tmax +🏙 prism_tmin +
 - Rainfall in the wettest month
 - Mean monthly rainfall (Jan + Feb +... / 12)
 - Rainfall in the driest month
 - Mean maximum monthly temp (avg. of the highs)
 - Mean minimum monthly temp (avg. of the lows)

NOTE: The units of these PRISM datasets are in mm x100 and °C x100 for precipitation and temperature, respectively. (So a cell value of 2300 in the PPTMax dataset is 23 mm of precipitation).

Data processing

As Specified Below

Union of Inputs

Intersection of Inputs

- Set processing extent
- Subset data

Jubsel uala		Current Display Extent
		As Specified Below
-	200	Browse
	A	Same As layer:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PigmySalamander_South
Contraction of the Contract	C 1	AnalysisMask.img
and the second second	13.6	SEReGAP.img
51.10	Geographic Transforma	ation -
A CONTRACT OF	Processing Extent	
All and a second second	Extent	As Specified Below
CARLES - AN		← 256199.290373647 → 351809.290373647
		↓ 3862270.33288617 ↑ 3953800.33288617
5.7	Snap Raster	AnalysisMask.img 🔹 🦳
A V. AN	Raster Analysis	,
Stand of the second	Coll Size	Maulanum of basute -

DEM processing

- Dem \rightarrow
 - <u>Slope</u> (percent)
 - Aspect
 - <u>Northness</u>: Cos([Aspect] * math.pi/180)
 - *Eastness*: Sin([Aspect] * math.pi/180)
 - Insolation
 - TPI (fine: 30/250; coarse: 1500/2000)
 - <u>Distance from streams</u> (flow accumulation > 1000 cells)

Land cover processing

• % [relevant] forest within [150m, 400m]

Analysis layers

- ∃ dist2stream
- ⊞ focforest150
- 🗄 🇱 focforest400
- 🗄 🎆 insolation30
- 🗄 🇱 ned30
- 🗉 🏼 nlcd2006
- 🗄 🇱 prism_pptdry
- 🗉 🏼 prism_pptmean
- 🗄 🎆 prism_pptwet
- 🗉 🇱 prism_tmax
- 🗉 🧱 prism_tmin
- 🗉 🇱 seregap
- 🗉 🇱 slope30
- 🗉 🇱 tpi2000
- 🗉 🏢 tpi250

Source		
Elevation		
Display		
Cache		
Joins		
Relates		

Put all these layers into a single folder...

Each needs to have the extend and cell size as the Analysis Mask

Raster Information

Columns	3187
columns	5101
Rows	3051
Number of Bands	1
Cell Size X	30
Cell Size Y	30
	37.00.110

Part 2: Rule based modelling

2.1 Setting the rules...

From our background research as well as meetings with pigmy salamander experts, we've deduced the following constraints on our salamander.

- Salamanders are found above 762 m in elevation and below 2012 m.
- Salamanders prefer areas that are within 400 m of the following GAP cover classes:
 - Class #63 Central and Southern Appalachian Northern Hardwood Forest
 - Class #84 Southern and Central Appalachian Oak Forest
 - Class **#96** Central and Southern Appalachian Spruce-Fir Forest
- Salamanders require places where the max monthly temperature never exceeds 18° C.
- Salamanders occur in places where the driest month gets at least 96mm of precipitation.

Part 2: Rule based modelling

2.2 Applying the rules...

Given this information, we can fairly easily extract the pixels that meet these criteria using raster calculations in a geoprocessing model:

Map Algebra expression											52		
Layers and variables -	- 	7 4 1 0 %prism	8 5 2 %" < 2 	9 6 3 2012) pt%" >	/ * + *	== > < ())	= >=) rest40	& 	Conditional — Con Pick SetNull Math Abs Exp Event0				

Part 3: Statistical Modeling (MaxEnt)

http://www.cs.princeton.edu/~schapire/maxent/

maxent.bat

Samples	3		E	nvironmental lay	ers	
File	Browse	Directory/File				Browse
✓ Linear features				Cr	reate respo	nse curves (
 ✓ Linear features ✓ Quadratic features 				Cr Make j	reate respo	onse curves [predictions [
Linear features Quadratic features Product features			Dojac	Cr Make j kknife to measuu	reate respo pictures of re variable i	onse curves [predictions [importance]
 Linear features Quadratic features Product features Threshold features 			Do jac	Cr Make j kknife to measu Outp	reate respo pictures of re variable ut format 1	nse curves [predictions [importance [Logistic
 Linear features Quadratic features Product features Threshold features Hinge features 	Outruit discreterer		Dojac	Cr Make j kknife to measu Outpu Outpu	reate respo pictures of re variable ut format t file type	nse curves [predictions] importance [Logistic 4 asc 4
Linear features Quadratic features Product features Threshold features Hinge features Auto features	Output directory		Do jac	Cr Make j kknife to measu Outpu Outpu	reate respo pictures of re variable ut format t file type	nse curves [predictions [importance] Logistic asc 4 Browse

Step 3.1 Downloading MaxEnt

http://www.cs.princeton.edu/~schapire/maxent/

maxent.jar

• Java runtime

maxent.bat

Batch file that increases memory and

runs maxent.jar

ĺ	🧾 m	axent.k	oat - Note	pad		
	File	Edit	Format	View	Help	
	java @if	a -mx erro	<mark>2048</mark> m · rlevel	-jar ı 1 pa	maxent.ja use	ur

More info on MaxEnt

readme.txt

Step 3.2 Data Preparation

• Species location file \rightarrow csv file

species,longitude,latitude bradypus_variegatus,-65.4,-10.3833 bradypus_variegatus,-65.3833,-10.3833 bradypus_variegatus,-65.1333,-16.8 bradypus_variegatus,-63.6667,-17.45 bradypus_variegatus,-63.85,-17.4

- Environment layers \rightarrow ASCII rasters
 - Make sure all layers are in single folder (EnvVars)
 - Make sure an ASCII folder exists in the Data folder

Step 3.3 Running MaxEnt

Samples		Er	vironmental layers			-
File der\SouthernSalamander_NCWC.csv	Browse	e Directory/File ::WorkSpace\Ex3_Salamander\Data\AS				
		insolation30.asc	Continuous	_	-	
		✓ ned30.asc	Continuous		-	
		Icd2006.asc	Categorical		-	
		rism_pptdry.asc	Continuous		•	
		prism_pptmean.asc	Continuous		•	
S_Pigmy_Salamander		prism_pptwet.asc	Continuous		•	
		prism_tmax.asc	Continuous		•	
		prism_tmin.asc	Continuous		•	
		seregap.asc	Categorical		•	
		Slope30.asc	Continuous		•	
		toi2000 acc	Continuous	t all	- 1	1
Linear features			Create resp	onse curve	s 🗹	
V Quadratic features		Dojar	wake pictures o	importanc	15 🕑	
Product features		Do Jac	Output format	Logistic		
Threshold features			Output file type	asc	-	,
🖌 Hinge features	Output direct	ory C:\WorkSpace\Ex3_Salar	mander/Data/Output	Brow	se	
Auto features	Projection lay	vers directory/file		Brow	se	
Run		Settings	Help			1

Step 3.4: Looking at the results

plots maxent.log maxentResults.csv						
S Pigmy Salamander asc					1491 - 1953	A.
S_Pigmy_Salamander.html S_Digmy_Salamander.html	4					
S_Pigmy_salamander.lambd	Variable	Percent cont	ribution	Permutation importance		
S_Pigmy_Salamander_expla	ned30 asc	I ercent con	34.2	29.4		
S Pigmy Salamander omis	prism tmax asc		18.9	4 9	A Star	
S Diamy Salamander came	focforest150 asc		15.8	10.6	Ja	ck
al 3_Pigmy_salamander_samp	dist2stream.asc		8.9	8.1	aspect30.asc	
📳 S_Pigmy_Salamander_samp	seregap.asc		7.5	7.2	dist2stream.asc	
	prism pptdrv.asc		5.2	2.1	focforest400.asc	
	focforest400.asc		2.8	22.4	insolation30.asc	
	slope30.asc		2.4	7.6	은 ned30.asc	
	nlcd2006.asc		1.6	1.4	ricd2006.asc > m prism pptdrv.asc	
	aspect30.asc		0.8	0.9	e prism_pptmean.asc	
	prism_pptwet.asc		0.7	0	prism_pptwet.asc	
	insolation30.asc		0.6	3	prism_tmax.asc	
	prism_tmin.asc		0.3	0	seregap.asc	
	tpi250.asc		0.3	0.1	slope30.asc	
	tpi2000.asc		0.1	2.1	tpi2000.asc	
	prism_pptmean.asc		0	0.3	tpi250.asc	

Jackknife of regularized training gain for S_Pigmy_Salamander

Step 3.5 Mapping the results

Cumulative threshold	Logistic threshold	Description	Fractional predicted area	Training omission rate
1.000	0.009	Fixed cumulative value 1	0.519	0.000
5.000	0.037	Fixed cumulative value 5	0.304	0.030
10.000	0.076	Fixed cumulative value 10	0.207	0.030
4.464	0.034	Minimum training presence	0.320	0.000
22.768	0.178	10 percentile training presence	0.102	0.091
22.768	0.178	Equal training sensitivity and specificity	0.102	0.091
19.228	0.148	Maximum training sensitivity plus specificity	0.123	0.030
4.464	0.034	Balance training omission, predicted area and threshold value	0.320	0.000
21.040	0.165	Equate entropy of thresholded and original distributions	0.112	0.061

plots (your value may be *slightly* different...)

maxent.log

maxentResults.csv

S_Pigmy_Salamander.asc

S_Pigmy_Salamander.html

S_Pigmy_S_lamander.lambdas

ASCII \rightarrow Raster \rightarrow Set Value < 0.034 to NoData, everything else to HABITAT!

⁽floating point!)

Step 3.5 Mapping the results

Deliverables

- A short description of the biophysical features that may be relevant in modeling your species.
- A listing of the spatial datasets that are useful proxies for these biophysical features
- A geoprocessing toolbox used to run a rule-based model for your species
- A geoprocessing toolbox used to generate the inputs formatted for MaxEnt
- Your MaxEnt results
- Habitat range maps for the species derived from the rulebased and MaxEnt models