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The MaxEnt software package is one of the most popular tools for species distribution and environmental niche modeling, 
with over 1000 published applications since 2006. Its popularity is likely for two reasons: 1) MaxEnt typically outperforms 
other methods based on predictive accuracy and 2) the software is particularly easy to use. MaxEnt users must make a num-
ber of decisions about how they should select their input data and choose from a wide variety of settings in the software 
package to build models from these data. The underlying basis for making these decisions is unclear in many studies, and 
default settings are apparently chosen, even though alternative settings are often more appropriate. In this paper, we pro-
vide a detailed explanation of how MaxEnt works and a prospectus on modeling options to enable users to make informed 
decisions when preparing data, choosing settings and interpreting output. We explain how the choice of background 
samples reflects prior assumptions, how nonlinear functions of environmental variables (features) are created and selected, 
how to account for environmentally biased sampling, the interpretation of the various types of model output and the chal-
lenges for model evaluation. We demonstrate MaxEnt’s calculations using both simplified simulated data and occurrence 
data from South Africa on species of the flowering plant family Proteaceae. Throughout, we show how MaxEnt’s outputs 
vary in response to different settings to highlight the need for making biologically motivated modeling decisions.

The MaxEnt software package (Phillips et al. 2006) is  
particularly popular in species distribution/environmental 
niche modeling, with over 1000 applications published since 
2006. MaxEnt users are confronted with a wide variety of 
modeling decisions, from which input datasets to choose to 
multiple settings available in the software package. Guidance 
on the implications of different MaxEnt modeling deci-
sions and their biological justifications are lacking, with the 
notable exceptions of Elith et al. (2010, 2011). The default 
settings seem often chosen as a consequence of unfamil-
iarity with the maximum entropy modeling method, even 
though alternatives are often more appropriate. As MaxEnt 
is used to address increasingly complex problems (and not 
simple exploratory analyses), it is important to ensure that 
modeling decisions are biologically motivated by specific 
hypotheses, study goals, and species-specific considerations 
and reflect the intended a priori assumptions (Peterson et al. 
2011, Araujo and Peterson 2012).

Here, we provide a detailed explanation of the mechanics 
of MaxEnt, and a prospectus on modeling options, so that 
users can make informed decisions about choosing settings, 
inputs and outputs. In particular, we provide guidance on 
choosing background data, the range of functional forms of 
environmental variables (i.e. features) permitted, the degree 
to which MaxEnt regulates model complexity, controlling 

for sampling bias, interpreting different types of output and 
evaluating models (see glossary in Supplementary material 
Appendix 1).

II. How MaxEnt works

MaxEnt takes a list of species presence locations as input, 
often called presence-only (PO) data, as well as a set of 
environmental predictors (e.g. precipitation, temperature) 
across a user-defined landscape that is divided into grid 
cells. From this landscape, MaxEnt extracts a sample of 
background locations that it contrasts against the presence 
locations (section III.A). Presence is unknown at back-
ground locations.

Originally, MaxEnt was employed to estimate the den-
sity of presences across the landscape (Phillips et al. 2006). 
Density estimation implicitly assumes that individuals 
have been sampled randomly across landscape; i.e. samples 
occur in proportion to population density. When the total 
population size is known, such models predict the occur-
rence rate in a cell, defined as the expected number of indi-
viduals in that cell (Fithian and Hastie 2012). However, 
population size is typically unknown, so only relative com-
parisons among these rates are meaningful, resulting in a 
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relative occurrence rate (ROR; Fithian and Hastie 2012). 
Given that an individual was observed, the ROR describes 
the relative probability that the individual derived from 
each cell on the landscape. In other words, the ROR is the 
relative probability that a cell is contained in a collection of 
presence samples. The ROR corresponds to Maxent’s raw 
output.

In contrast, species distribution modelers sometimes 
assume that grid cells (rather than individuals) on the 
landscape have been sampled randomly for presence. This 
naturally leads to models that predict probability of pres-
ence in each cell (Royle et al. 2012). These two sampling 
assumptions (individuals vs grid cells) can lead to similar 
results when presences are spatially sparse but are incompat-
ible when multiple counts are likely to occur per grid cell 
(Renner and Warton 2012). MaxEnt can be used to predict 
probability of presence only by using a transformation of 
the ROR, called logistic output (Phillips and Dudik 2008), 
which relies on strong assumptions that have been criticized 
(section III.E; Royle et al. 2012).

Thus Maxent users have a dilemma: they can either 
assume PO data is a random sample of individuals (a 
questionable assumption) and predict RORs (a reasonable 
interpretation of MaxEnt’s output) or they can assume 
the data represent a random sample of space (a reason-
able assumption if sampling bias is not a problem) and 
predict probability of presence (a questionable interpreta-
tion of MaxEnt’s output). If one is willing to forego the 
rigorous assumptions about sampling and the probabilistic 
interpretation of model output, it is still possible to simply 
interpret MaxEnt’s predictions as indices of habitat suit-
ability, which might be useful for qualitative exploratory 
analyses. Here, we make general observations that relate to 
any of these interpretations, but focus on predicted RORs 
to describe model specification in the next section because 
these are the fundamental quantities predicted by maxi-
mum entropy models.

MaxEnt predicts RORs as a function of the environmen-
tal predictors at that location. These RORs (P*(z(xi))) take 
the form,

P*(z(xi))  exp(z(xi)l)/Siexp(z(xi)l) (1)

where z is a vector of J environmental variables at location  
xi, and l is a vector of regression coefficients, with z(xi) l   
z1(xi)*l1  z2(xi)*l2  …  zJ(xi)*lJ. These RORs sum to 
unity across the landscape because the denominator is a sum 
of the RORs over all grid cells in the study (called normaliza-
tion). Normalization ensures that the occurrence rates are in 
fact relative occurrence rates.

A. Different derivations of MaxEnt’s model

Equation (1) is part of a general class of models designed to 
predict RORs, which leads us to describe MaxEnt models 
from four related perspectives. Together, these descriptions 
provide a foundation for understanding MaxEnt models 
from both statistical and machine learning perspectives. We 
then proceed to describe the specific algorithm that MaxEnt 
uses to obtain a model.

1. A normalized Poisson model
Normalized exponential functions (Eq. 1) are a general class 
models that predict count data (i.e. the number of individu-
als; Warton and Shepherd 2010, Aarts et al. 2012, Fithian 
and Hastie 2012, Renner and Warton 2012, Royle et al. 
2012). When the aim is to predict counts of occurrences, it 
is helpful to think of MaxEnt as a Poisson model where the 
number of counts is a function of environmental variables. 
Such models are commonly referred to as the resource selec-
tion functions in the habitat suitability literature (Manly 
et al. 2002, Keating and Cherry 2004, Johnson et al. 2006). 
This log-linear model has the form:

yi ∼ exp(z(xi)l) (2)

where yi is the number of observations in cell i (Cressie 
1993, Aarts et al. 2012, Fithian and Hastie 2012). Equation 
(2) is the occurrence rate in the numerator of Eq. 1, but lacks 
the normalization term in the denominator. Fithian and  
Hastie (2012) argue that predicting ROR is the best one  
can often do with typical PO data in a Poisson model.  
PO data rarely correspond to a unique record for each 
observed individual, and so if one were to obtain twice as 
many records in a particular region, it would be difficult 
to determine if that doubling were due to the occurrence 
of twice as many individuals or twice as much sampling. A 
number of studies have recently shown that the count model 
in Eq. (2) is a discretized approximation to more general 
class of inhomogeneous Poisson point process models that 
treat the landscape as continuous (Warton and Shepherd 
2010, Chakraborty et al. 2011, Fithian and Hastie 2012, 
Renner and Warton 2012). Furthermore, Renner and 
Warton (2012) note that the assumption of spatial indepen-
dence of PO samples may be frequently be violated, but that 
inhomogeneous Poisson point process models can remedy 
this to some extent.

2. A multinomial model
The counts observed over a landscape of N cells can equiva-
lently be interpreted as a multinomial distribution, where

{y1,y2, …., yN} ∼ Multinomial(P*(z(x1)),  
        P*(z(x2)), …., P*(z(xN))) (3)

(Dudik and Phillips 2009, He 2010). By using a multino-
mial model, the RORs automatically sum to unity across the 
landscape. Such models are referred to as density estimation 
because one is estimating the density of observations (pres-
ences) across the landscape (Fithian and Hastie 2012, Royle 
et al. 2012).

3. Maximizing entropy in geographical space
Equation (1) can be derived as the distribution with maxi-
mum entropy in geographic space (cf. Aarts et al. 2012). 
In other words, predictions are made for each cell on the 
landscape. The principle of maximum entropy postulates 
that models should be chosen that are as similar as possible 
to prior expectations while also being consistent with the 
data (Jaynes 2003, Dudik et al. 2004). The prior distribu-
tion, Q(xi), reflects the user’s expectation about the distri-
bution before accounting for the data. The relative entropy  
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(or Kullback–Leibler divergence) measures the similarity of 
the prediction to the prior by (Phillips and Dudik 2008):
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Usually the prior is a uniform distribution in geographic 
space, signifying that all cells are a priori equally likely to 
contain an individual (although other priors are possible; 
section III.D). This assumption corresponds to Q(xi)  1/N 
(Eq. (4) then reduces to the Shannon entropy).

To ensure that the predictions are consistent with data, 
MaxEnt constrains the moments of the prediction (e.g. mean, 
variance) to match the empirical moments of the data. For 
example, one can constrain the prediction to have the same 
mean value of minimum July temperature, mean annual 
precipitation, etc., as the presence locations. For predictor j, 
with value zj, the constraints can be written as:
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The left hand side of Eq. (5) describes the average value of 
zj over the prediction while the right hand side describes the 
average value of zj over the set of M presence locations. Many 
different distributions of P*(z(xi)) might satisfy Eq. (5), so 
the maximum entropy principle selects the model that is 
most similar to the prior.

Maximizing the similarity between the prediction and the 
prior (section II.B) results in more general version of Eq. (1) 
that includes the prior distribution:

P*(z(xi))  Q(xi)exp(z(xi)l)/Si Q(xi)exp(z(xi)l) (6)

where the sum in the denominator is over all grid cells in 
the study. Interpreting models in geographic space is helpful 
for understanding how spatially explicit models of sampling 
effort, which are incorporated in the prior distribution, affect 
ROR predictions (section III.D).

4. Minimizing relative entropy in environmental space
MaxEnt’s predictions can be equivalently interpreted for a 
set of environmental conditions, i.e. in environmental space, 
irrespective of their spatial location (Elith et al. 2011, Aarts 
et al. 2012). This provides a particularly intuitive graphical 
interpretation of MaxEnt models (Fig. 1). Predictions in 
environmental space rely on comparing empirical probabil-
ity densities of predictors. For a predictor Z, a probability 
density over all locations describes the relative likelihood of 
Z taking on different values across the landscape, written 
as P(z) (Fig. 1). Similarly, P(z) is a multivariate probability 
density over the vector of predictors Z. Note that P(z) is the 
probability associated with a set of predictors, whereas the 
notation for the previous three methods required P(z(xi)), 
the probability associated with a particular location xi.

To understand MaxEnt’s predictions in environmen-
tal space, three probability densities of Z are needed: the 
prior probability density, Q(z); the probability density of Z 
at presence locations, P(z); and the predicted ROR at each 
location in the landscape P*(z) (Fig. 1). In environmen-
tal space, enforcing the null hypothesis that the species is 
equally likely to be anywhere in the landscape corresponds 
to assuming that environment Z is used in proportion to its 
frequency. Thus we equate Q(z) with the multivariate prob-
ability density of predictors across the entire landscape (Elith 
et al. 2011). The observed density of predictors at presence 
locations, P(z), is then predicted by P*(z). In environmental 
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Figure 1. Illustration of calculating response curves for P. punctata in MaxEnt (with default settings) from probability densities of minimum 
July temperature (MJT). MaxEnt builds a model for the ratio of the probability density of MJT at presence locations (dark grey) to the 
probability density of MJT at background locations (black), denoted by P(z)/Q(z) (Eq. 8). This model, P*(z), is represented by the 
response curve (black line), a smoothed estimate of the actual ratio of these densities. The response curve tends to pick up jumps in the 
ratio (e.g. near x  0, 2 and 3.2), as well as broad, smoothed trends (e.g. the unimodal shape). The sharp spikes in the response curve near 
x  0 result from using two threshold features. Clamping is illustrated at the left edge of the response curve. The light grey probability 
density represents predicted presences based on thresholded model output (for illustration).
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space, MaxEnt maximizes the similarity between P*(z) and 
Q(z), and predicts the ROR in environment z as:

P*(z)  Q(z)exp(zl)/Si Q(z)exp(zl) (7)

Here, the sum in the denominator is defined over the set 
of distinct predictors (Z), as opposed to the set of spatial 
locations in Eq. (6), although these are equivalent formula-
tions. Conveniently, Eq. (7) can then be rearranged to illus-
trate how MaxEnt models the ratio of P(z) to Q(z) shown 
in Fig. 1:

P(z)/Q(z) ≈ P*(z)/Q(z)  exp(zl)/constant (8)

High values of P*(z) are observed when P(z) is large relative 
to Q(z) (Fig. 1). See Fig. 1 for an illustration of how MaxEnt 
maximizes the similarity of the prediction to the prior: the 
probability density of the minimum July temperature at pre-
dicted presences (light grey) has a similar mean to the density 
from observed presences (dark grey), however, the mode of 
predicted presences is shifted towards the mode of the back-
ground (black), compared to the mode of the observed pres-
ences). This occurs because minimizing the relative entropy 
of the predicted distribution with respect to the prior makes 
it as similar as possible to the density of background loca-
tions while still satisfying constraints imposed by the density 
of presence locations (e.g. similar means).

B. The MaxEnt implementation

Here, we discuss the means by which the MaxEnt software 
package makes predictions (see Supplementary material for 
an illustration of MaxEnt’s calculations in an Excel work-
sheet). MaxEnt’s treatment of the predictors derives from 
the field of machine learning. In most statistical models, 
Z represents a handful of predictors, e.g. temperature, pre-
cipitation, etc., selected a priori by the user. In contrast, 
MaxEnt derives a number of so-called features for each pre-
dictor, each of which is a simple mathematical transforma-
tion of the predictor (linear, quadratic, product, threshold, 
hinge; section III.B.). Here, we use the term predictor to 
refer to the environmental covariates themselves and fea-
tures to refer to the mathematical transformations of these 
predictors created by MaxEnt (sometimes called a basis 
expansion). The role of the features is depicted by response 
curves, which plot predicted ROR against the values of a 
particular predictor (Fig. 1, 2) and provide an important  
tool for evaluating the biological plausibility of the  
model. The user can choose which types of features to use 
and obtain either the complex, highly nonlinear response 
curves typical of MaxEnt, or the simpler response curves 
composed of fewer features typical of statistical models.

To obtain a solution, MaxEnt maximizes the so-called 
gain function, a penalized maximum likelihood function. 
Exponentiating the gain function gives the likelihood  
ratio of an average presence to an average background 
point, so maximizing the gain corresponds to finding a 
model that can best differentiate presences from back-
ground locations. Using the formulation in geographic 
space, one can substitute Eq. 6 into Eq. 4 to obtain the 
first two terms in the gain function, while the third term is 

a penalty to reduce overfitting (Dudik et al. 2004, Phillips 
et al. 2006):
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where b is a regularization coefficient, and s2[zj] is the 
variance of feature j at presence locations. The first term 
describes the likelihood of the presence data; Eq. (4) shows 
that the predicted ROR increases with the value of z(xi)l, so 
presence locations should be assigned large values of z(xi)l 
to increase the gain. The second term describes the likeli-
hood at all N background locations (section III.A). Since 
this term is negative, the gain is reduced if large values of 
z(xi)l are assigned to background locations. The choice 
of landscape, and how it is discretized, will clearly affect 
predictions (section III.A). Embedded in the second term 
is the prior distribution Q(z), which down weights the 
importance of sites that are expected to contain the spe-
cies (the predictors z can only describe how the observed 
occurrence pattern differs from our expectations). Thus 
prior assumptions about the species distribution, or the 
sampling of it, clearly affect predictions (section III.D). 
The third term in Eq. (9) is a regularization, or LASSO, 
penalty, and is used in statistics and machine learning to 
reduce model overfitting (Tibshirani 1996, Hastie et al. 
2009). Regularization forces many coefficients to be zero 
and retains only those that improve the first two terms in 
Eq. (9) enough to offset the penalty in the third term. The 
regularization coefficient, b in Eq. (9), must be defined by 
the user, and determines the strength of the penalty. The 
regularization penalty is proportional to variance of the 
feature j at presence locations, s2[zj], based on the rationale  
that features with larger variance should incur a larger 
penalty and be less likely to be included in the model 
(Phillips and Dudik 2008). The regularization penalty is 
inversely proportional to the square root of the sample 
size, which reduces the effect of regularization as sample 
size increases.

III. Model settings: how they work and how 
to choose them

We have identified six key decisions about input data and 
settings that can critically influence the models fitted by 
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Phillips and Dudik 2008). Confusingly, background samples 
are sometimes called pseudoabsences (Phillips et al. 2009). 
Absences are desired because they allow one to predict prob-
ability of presence (e.g. using logistic regression; Peterson 
et al. 2011, Anderson 2012) and without absences predic-
tions are typically confined to ROR (Ward et al. 2009; but 
see section III.E).

By default, MaxEnt uses a prior, Q(x), which assumes 
that the species is equally likely to be in anywhere on the 
landscape. This assumes that every pixel x has the same prob-
ability of being selected as background (in geographic space), 
or equivalently that every environment z has a probability of 
being selected as background according to its frequency P(z) 
(in environmental space). Modifying the background sample 
is therefore equivalent to modifying the prior expectations 
for the species’ distribution. Note that by using a uniform 
prior, MaxEnt predicts a distribution that is as spatially dif-
fuse as possible, which tends to predict the largest possible 
range size consistent with the data.

To see how different background samples affect response 
curves, consider the relationship between the ROR for  
P. lacticolor and the minimum July temperature (MJT) 
gradient for different background choices in Fig. 2. When 
background is selected from a region larger than P. lacticolor’s 
range, such as the Cape Floristic Region, the MJT gradient 
spans locations with both higher and lower MJT than where  
P. lacticolor is observed and produces a unimodal response 
curve. When background is selected only from a smaller 
region encompassing just P. lacticolor’s known range, a 
(roughly) monotonic response curve is obtained because 
values of MJT lower than P. lacticolor’s tolerance are not 
included in the background sample. Hence, the choice of 
background sample can alter the features selected by MaxEnt 
based on the range of the environmental gradients it spans. 
Neither response curve is more correct than the other;  
this highlights the need for an ecological justification for 
background selection. Understanding the impact of the 

MaxEnt. For each of these, we first describe how the deci-
sions influence the relevant MaxEnt calculations and then 
discuss general ecological and computational considerations 
for making these choices. Our goal is to provide users with 
the necessary understanding to make their own model-
ing decisions, which should be specific to species biology, 
study goals and data limitations. Detailed demonstrations 
and related technical details are contained in Supplementary 
material appendices paired with each subsection.

For illustrative purposes, we model the range limits of 
Protea punctata (692 presences) and Protea lacticolor (27 
presences), two woody shrubs inhabiting Mediterranean cli-
mate fynbos shrubland communities in the Cape Floristic 
Region (CFR) of South Africa. Samples were obtained as 
part of the Protea Atlas Project (Rebelo 2002), an exhaustive 
survey of the Proteaceae family across the CFR ( 250 000 
records over 90 000 km2). Importantly, the samples span 
the complete extent of the species’ ranges and cover all fyn-
bos habitats where any species of Proteaceae might occur. 
Knowledge of the sampling locations for the atlas greatly 
facilitates the assessment of sampling bias, which appears 
to be small (Supplementary material Appendix 5, Fig. E1). 
Low sampling bias may be atypical for biological occurrence 
records but in our case allows for an ideal data set for illus-
tration. For modeling, we used a set of 24 environmental 
variables (Supplementary material Appendix 2) suggested by 
Latimer et al. (2006) for the Proteaceae that includes both 
climatic (Schulze 1997) and edaphic variables. These are at 
1 arc minute spatial resolution (approximately 1.56  1.85 
km), enabling us to characterize the high topographic and 
edaphic variation across the CFR (Linder 2005).

A. Background data

How it works
MaxEnt contrasts presences against background locations 
where presence/absence is unmeasured (Fig. 1; Eq. (9); 
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Figure 2. Illustration of the variability in response curves derived from different background samples for P. lacticolor. Filled densities repre-
sent the distribution of minimum July temperature (MJT) values in the entire Cape Floristic Region (black), a region encompassing just 
the species known range (dark gray), and at sampled presence locations (light grey). The black and dark grey distributions represent differ-
ent ways of modeling Q(z) in Eq. 7 based on background samples drawn from different spatial extents. Solid lines represent response curves 
fit by MaxEnt using default features classes and only MJT as a predictor (black: background from Cape Floristic Region; dark grey:  
background from known range).
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to interaction terms in regression (when linear features are 
also included). Threshold features make a continuous pre-
dictor binary by generating a feature whose value is 0 below 
the threshold and 1 above. Hinge features are like thresh-
old features, except that a linear function is used, instead 
of a step function (Supplementary material Appendix 1; 
Phillips and Dudik 2008). Categorical features (e.g. land-
use) split a predictor with n categories into n binary fea-
tures, which take the value 1 when the feature is present 
and 0 otherwise. All features are rescaled to the interval 
[0,1] to make the coefficients comparable.

By default, MaxEnt uses the number of presences to deter-
mine which feature classes to use; more presences allows more 
features and  80 presences leads to all feature classes being 
used. However, the user can also specify the feature classes 
manually. Consider a model with 19 predictors, which might 
occur if one selects the ‘Bioclim’ predictors from Worldclim 
(Supplementary material Appendix 4, Table D2; Hijmans 
et al. 2005). One linear and quadratic feature is constructed 
for each predictor. Product features are constructed for each 
pair of predictors, giving a total of 19!/2!17!  171 unique 
product features. The number of possible piecewise (thresh-
old and hinge) features depends on the number of presences. 
MaxEnt permits a threshold, forward hinge, and backward 
hinge (Supplementary material Appendix 1) feature between 
each pair of successive values of a predictor. For example, if 
there are 100 presence observations the number of piecewise 
features is given by: 3 (types of piecewise functions)  99 
(pairs of data point)  19 (predictors)  5643. This collec-
tion of features is explored by MaxEnt, and the most use-
ful features are extracted. The features retained, along with 
their coefficients (l) and minimum/maximum values of the 
feature, can be found in a file written to MaxEnt’s output 
directory with file extension. ‘lambdas’.

How to choose
We recommend that users minimize correlation among pre-
dictors and identify the appropriate feature shapes prior to 
model building (depending on study goal). From the col-
lection of biologically plausible predictors, we recommend 
removing highly correlated predictors using correlation analy-
sis, clustering algorithms, principal components ana lysis or 
some other dimension reduction method because the complex 
features created by MaxEnt are often already highly correlated. 
If projection or interpretation of the species’ distribution or its 
environmental drivers is the goal, prescreening the predictors 
and their feature classes will lead to parsimonious and interpre-
table models. This approach corresponds to treating MaxEnt 
as a traditional statistical model (cf. Renner and Warton 2012). 
An alternative school of thought based in machine learning, 
suggests including all reasonable predictors in the model and 
letting the algorithm decide which ones are important, via 
regularization (section III.C; Phillips et al. 2006). Elith et al. 
(2011) have noted that high collinearity is less of a problem 
for machine learning methods compared to statistical methods, 
but we caution that this is only true if predictive accuracy of  
the presences is the study goal. The MaxEnt software package 
can accommodate either approach, however it uses the machine 
learning approach by default.

In considering feature selection, it is useful to think 
about species responses to environmental gradients (cf. 

background on response curves is particularly critical when 
extrapolating to novel environmental scenarios (Elith et al. 
2010, Webber et al. 2011).

Conceptually, MaxEnt contrasts the environmental con-
ditions at the background locations with those at observed 
presence locations (using the ratio P(z)/Q(z); Fig. 1). For 
example, consider fitting a model to MJT data only, which 
ranges from 2 to 10°C across some hypothetical region. If 
75% of presences are found in locations with MJT  8°C, 
one might be tempted to conclude that the species prefers 
warmer locations. But if 95% of the landscape consists of 
locations with MJT  8°C, one should actually arrive at the 
opposite conclusion: the species prefers the lower MJT loca-
tions, but high MJT locations are primarily available. Thus 
MaxEnt’s conclusions depend on whether MJT is uniformly 
distributed over the background or skewed (Fig. 2).

How to choose
We recommend that the background sample should be 
chosen to reflect the environmental conditions that one is 
interested in contrasting against presences based on the spa-
tial scale of the ecological questions of interest (Saupe et al. 
2012). Often, this contrast is made against locations that are 
accessible via dispersal. If one uses the default settings for 
background selection (a uniform prior in geographic space), 
the background extent should contain only locations where 
the species is equally likely to reach.

A number of studies have documented the variability 
in predictions that can emerge from different background 
samples for MaxEnt, with a particular focus on the extent 
of the region from which they are selected (Fig. 2; Phillips 
et al. 2009, VanDerWal et al. 2009, Anderson and Raza 
2010, Baasch et al. 2010, Elith et al. 2010, 2011, Giovanelli 
et al. 2010, Yates et al. 2010, Anderson and Gonzalez 2011, 
Barve et al. 2011, Saupe et al. 2012). There is considerable 
flexibility for users to specify exactly which points to use 
as background, choosing their total number, or the spatial 
extent from which they are chosen. For example, if one were 
interested in determining the best location for a reserve for 
P. punctata then the background should be drawn only from 
the species known range, whereas if one were interested in 
which Mediterranean-climate regions it might invade world-
wide in the absence of dispersal limitation (hypothetically) 
then the background should be chosen from these habitats 
across the globe (Barve et al. 2011, Webber et al. 2011; more 
examples in Supplementary material Appendix 3).

B. Features

How it works
MaxEnt is capable of building very complex, highly non-
linear response curves (Fig. 1, 2) using a variety of feature 
classes. For example, if we use precipitation as a predic-
tor, the linear feature class ensures that the mean value 
of precipitation at where the species is predicted to occur  
approximately matches the mean value where it is observed 
to occur (Eq. 5). A quadratic feature constrains the vari-
ance in rainfall where the species is predicted to occur to 
match observation. A product feature constrains the cova-
riance of rainfall with other predictors and is equivalent 
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The regularization coefficient, b in Eq. (9), is set by 
default for each feature class (linear, quadratic, etc.; 
Phillips and Dudik 2008) but can be tuned by multiply-
ing it by a user-specified constant to amplify or dampen 
its effect to reflect the desired level of confidence and pro-
duce more or less complex models, respectively (Anderson 
and Gonzalez 2011, Elith et al. 2011). If it is important 
to ensure that a model is fit with all candidate features 
(e.g. to test a particular hypothesis), one can set the reg-
ularization coefficients to zero, but this should only be  
done when the number of features is small relative to the 
number of presences.

How to choose
We recommend exploring a range of regularization coef-
ficient values and choosing a value that maximizes some 
measure of fit on a cross-validation data set (section III.F; 
Supplementary material Appendix 4, Fig. D1). The default 
regularization values have been chosen based on perfor-
mance across a range of taxonomic groups (Phillips and 
Dudik 2008), and may be useful when building models for 
many species simultaneously, when species-specific tuning 
is impractical. However, many studies focus on just a few 
species, for which the default regularization coefficients may 
not be optimal (Phillips and Dudik 2008, Elith et al. 2010, 
Anderson and Gonzalez 2011).

Importantly, it may be possible to produce simpler 
models that have similar performance to more complex 
models by using a priori predictor and feature selection and 
increased regularization (Supplementary material Appendix 
4, Fig. D3). Highly nonlinear response curves may also be 
undesirable because they may capture variation in corre-
lated but unmeasured (i.e. latent) predictors rather than 
the species’ response to the predictor of interest. Default 
regularization often retains hundreds of correlated features, 
so when biological interpretation is important, it may be 
more helpful to seek simpler models (see models that retain 
hundreds of features in Supplementary material Appendix 
4, Table D1 and Fig. D3). Often, overly complex mod-
els will extract qualitatively similar distribution patterns 
and response curves to those of simpler models because 
excess complexity simply models noise, while the domi-
nant patterns still persist (Warren and Seifert 2011, Syfert 
et al. 2013). However, coefficients often vary substantially 
between simple and complex models (Supplementary 
material Appendix 4, Table D1). While one can increase 
the regularization coefficients to remove more features, one 
should be cautious because it has the side effect of divorc-
ing predicted values of constraints from empirical values 
(Supplementary material Appendix 4, Fig. D2). A suite of 
tools for evaluating whether competing models are signifi-
cantly different from one another is available in ENMTools 
(Warren et al. 2010).

D. Sampling bias

How it works
By default, MaxEnt models are fit assuming that all locations 
on the landscape are equally likely to be sampled. However, 
occurrence data sets typically exhibit some sampling bias, 
wherein some environmental conditions (near towns, roads, 

Austin 2002, 2007; Fig. 2). While Austin (2002) argues that 
species responses are often nonlinear, we note that including 
too much flexibility may make it challenging to differenti-
ate noise from nonlinear signals in real data sets. Ecological 
theory suggests response curves are (at least for fundamental 
niches) often unimodal (Austin 2007) and hence quadratic 
features may be appropriate. However if a species’ niche is 
truncated such that the one side of the unimodal curve is 
not part of the background sample (e.g. chilling responses 
not sampled for tropical species), a linear feature might be 
sufficient. In this sense, feature selection can be intertwined 
with the selection of the study region. Omitting product fea-
tures may be desirable because the (marginalized) response 
curves for each predictor completely define the model and 
are easier to interpret than those that depend on the values 
of other predictors (so long as interactions are negligible). 
Threshold terms are appealing when a known physiological 
tolerance limit exists, such as a freezing tolerance threshold. 
Hinge features provide a generalization of linear and thresh-
old features and might characterize processes that initiate 
at a threshold and increase linearly (e.g. stomate controlled 
transpiration, or enzyme induction). A model using only 
hinge features produces complex but smoothed response 
curves that are much like GAMs (Elith et al. 2010). Austin 
(2002) observes that empirical response curves are often 
skewed and that this may be due to competition; one can 
constrain the skew using a cubic term or multiple hinge 
features, but this must be done by manually construct-
ing features outside the MaxEnt software (Supplementary 
material Appendix 4). Finally, we note that the general-
ity of any feature can be evaluated with cross-validation  
(section III.F).

C. Regularization

How it works
While the user can specify the feature classes to be used a 
priori, MaxEnt selects individual features (for each predic-
tor) that contribute most to model fit using regularization 
(Phillips et al. 2006). Regularization has been known to per-
form well in a variety of applications (Hastie et al. 2009) and 
is very efficient at selecting tens to hundreds of useful features 
from a candidate set of thousands to millions (Supplementary 
material Appendix 3, Table C1). Regularization is conceptu-
ally similar to the commonly used AIC and BIC diagnostics 
for model comparison (Burnham and Anderson 2002), in 
that it is based on a combination of likelihood and a com-
plexity penalty (cf. Warren and Seifert 2011). Regularization 
can also be interpreted as placing a Bayesian prior distribu-
tion on the parameters (Goodman 2003).

Regularization reduces over-fitting in two ways. First, 
it ensures that the empirical constraints (Eq. 5) are not  
fit too precisely (Supplementary material Appendix 3,  
Fig. C2). One expects some imprecision in the empirically 
measured constraints, so it is better to require that predic-
tions approximately satisfy constraints rather than to satisfy 
them exactly. Second, regularization penalizes the model in 
proportion to the magnitude of the coefficients, and there-
fore shrinks many coefficients toward zero while setting 
others to zero, thereby removing many features from the 
model (Tibshirani 1996).
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is based on the search effort there (details in Supplementary 
material Appendix 5, Table E1 and Appendix 6).

For the biased background approach (the DebiasAverages 
approach of Dudik et al. 2005) the user uses prior-information 
on the distribution of survey effort across a landscape to pre-
select background locations before running MaxEnt. Biased 
background points are typically drawn only from TGS loca-
tions (Syfert et al. 2013). These locations are then passed to 
MaxEnt using the ‘samples with data’ format (see MaxEnt’s 
tutorial). Unlike the biased prior method, this method does 
not directly incorporate any estimate of sampling effort into 
the MaxEnt training algorithm. This approach is motivated 
by the analogous case in presence–absence models, where  
the effect of sampling bias cancels out because it is common  
to presences and absences (Phillips et al. 2009). This assump-
tion is challenging to evaluate for PO data precisely because 
ascertaining the importance of sampling bias is not possible 
when sampling effort is unknown.

How to choose
We recommend that users always attempt to account for 
sampling bias. Approximations of sampling bias should be 
preferentially be derived from direct sampling measures (e.g. 
survey locations from Breeding Bird Survey). If such data is 
not available then users could either build a biased prior by 
modelling the distribution of TGS samples using different 
covariates than those included in the occurrence model, or 
build a biased prior from the distribution of sampling effort 
across the TGS (simply, a grid of relative sample frequency). 
If it is not possible to approximate sampling effort using TGS 
species then users should attempt to pre-select background 
localities based on prior-knowledge of sampling effort. Users 
should always provide strong support for approximations of 
sampling effort that are inferred (e.g. through TGS; Syfert 
et al. 2013), rather than directly derived from standardized 
surveys. When it is difficult to evaluate whether the assump-
tions of TGS are fulfilled, models should only be used for 
exploratory purposes, as there is no substitute for data.

Using a biased prior is preferred if sampling probabil-
ity can reasonably be estimated across the entire landscape 
(Supplementary material Appendix 5, Fig. E2, E3). A biased 
prior can be constructed using MaxEnt: TGS locations are 
provided to MaxEnt as if they represented a single species and 
the resulting prediction estimates sampling effort. Predictors 
might include distance to urban centers or roads, elevation, 
or topographic roughness (Phillips et al. 2009). Biased back-
ground sampling is necessary if sampling effort cannot be 
estimated across the entire landscape, but many TGS sam-
ples are available (Supplementary material Appendix 5, Fig. 
E2, E3). If very few TGS samples are available it will be very 
challenging to estimate sampling bias via either method, 
although this may represent the cases in which sampling 
bias is most prevalent. Presence locations are included in the 
background by MaxEnt, so using too few TGS locations will 
make it appear as though the species uses the environmen-
tal conditions in nearly the proportion in which they occur, 
which leads to dampened relationships to gradients and 
more spatially uniform predictions (Supplementary material 
Appendix 3, Fig. C3).

All options for discerning sampling bias from PO data 
rely on strong assumptions when sampling locations are 

etc.) are more heavily sampled than others, particularly when 
samples derive from museum specimens (Reddy and Dávalos 
2003, Graham et al. 2004, Phillips et al. 2009). The uniform 
sampling assumption does not require a uniformly random 
sample from geographic space, but instead that environmen-
tal conditions are sampled in proportion to their availability, 
regardless of their spatial pattern (i.e. a sample from P(z); 
Aarts et al. 2012).

When sampling is biased, one cannot differentiate 
whether species are observed in particular environments 
because those locations are preferable or because they receive 
the largest search effort (Phillips et al. 2009, Sastre and 
Lobo 2009, Wisz and Guisan 2009, Newbold et al. 2010, 
Chakraborty et al. 2011). For PO data, the probability that 
an individual was recorded at a location can be decomposed 
into the product of the probability of sampling the location, 
the probability of detecting an individual there, and the 
ROR (Yackulic et al. 2012). Typically, MaxEnt users either 
implicitly or explicitly assume that detection probability and 
sampling probability are constant across space and thus do 
not account for any sampling bias (Yackulic et al. 2012). 
For PO data, one must explicitly model the probability of 
sampling a location because no absence data exist to fully 
describe which locations were searched. Models for detec-
tion probability can be constructed from repeated sampling 
of the same locations (cf. Kery et al. 2010).

Accounting for sampling bias is similar to background 
selection in the sense that changing either reflects different 
prior expectations. By accounting for sampling bias, the null 
hypothesis states that individuals are uniformly distributed 
in geographic space and that the only reason they have been 
observed in particular locations is because those are the only 
places that were sampled. Thus the prior distribution for the 
species’ occurrence is the sampling distribution.

Data sets with explicit information on search effort (e.g. 
Breeding Bird Survey), allow sampling bias models to be 
formulated in geographic space (Supplementary material 
Appendix 4). Since this search effort is often unknown, 
methods to account for sampling bias are typically based on 
Target Group Sampling (TGS; Ponder et al. 2001, Phillips 
et al. 2009). TGS uses the presence locations of taxonomi-
cally related species observed using the same techniques as 
the focal species (usually from the same database) to estimate 
sampling, under the assumption that those surveys would 
have recorded the focal species had it occurred there (Phillips 
et al. 2009).

Models of sampling effort or TGS locations can be incor-
porated into MaxEnt using one of two strategies: using a 
biased prior gives a nonuniform weighting to a given set of 
background points, while a biased background uses a uni-
form prior but modifies the selection of background points 
(Dudik et al. 2005, Phillips et al. 2009). For the biased prior 
method, the user provides an estimate of the relative search 
effort in each location on the landscape (the FactorBiasOut 
method described by Phillips et al. 2009). This is the most 
straightforward way to account for sampling bias in MaxEnt 
(Phillips et al. 2009). The biased prior has the same interpre-
tation as the predicted ROR and reflects the assumption that 
the probability of observing an individual in a given location 
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values depend on the number of locations in the landscape, 
making comparison challenging among models fit with dif-
ferent numbers of background sample points, spatial resolu-
tions or extents (Phillips and Dudik 2008). Raw values can be 
skewed because they derive from an exponential model, and 
therefore may not be well calibrated with actual differences in 
suitability (Phillips and Elith 2010). Cumulative values can 
be problematic when small differences exist between a large 
subset of cells because these cells will be ranked from highest 
to lowest in spite of potentially negligible differences. Logistic 
outputs solve the problem of comparing models with different 
spatial scales at the expense of assumptions about the value 
of t and may produce better calibrated models (Phillips and 
Dudik 2008, Phillips and Elith 2010).

If estimating probability of presence is necessary for a 
particular application, it may be reasonable to estimate t or 
prevalence (or better, a conservative range of values) under 
circumstances where independent data are available, but 
the default value of t is not appropriate without some bio-
logical justification (Supplementary material Appendix 6,  
Fig. F1). Lele and Keim (2006) and Royle et al. (2012) 
suggest a method for estimating prevalence from presence 
only data, however the estimates tend to have large variance 
except when using very large data sets.

F. Evaluating models

How it works
A full treatment of evaluating model predictions is outside 
the scope of this study (Peterson et al. 2011), however we 
discuss some standard diagnostics output by MaxEnt. One 
objective of model evaluation is assessing generality, in the 
sense that the model identifies attributes of the species dis-
tribution and not simply artifacts of a noisy sampling pro-
cess. Generality can be obtained by penalizing models for 
complexity or using cross-validation. Penalizing for model 
complexity is done internally in MaxEnt using regulariza-
tion (section III.C), but Warren and Seifert (2011) have sug-
gested augmenting this by using AIC and BIC to compare 
competing MaxEnt models. MaxEnt provides a number of 
options for cross-validation, where presence locations are 
usually split into training data, used to fit the model, and 
test data, used to evaluate model predictions. K-fold cross-
validation represents the most popular choice wherein the 
data are split into k independent subsets, and for each subset, 
the model is trained with k1 subsets and evaluated on the 
kth subset.

To perform many types of model evaluation, metrics of 
model fit are needed (cf. Liu et al. 2010). Area under the 
receiver-operator curve (AUC) has emerged as the most 
popular in the MaxEnt literature. AUC is a threshold inde-
pendent measure of predictive accuracy based only on the 
ranking of locations. AUC is interpreted as the probability 
that a randomly chosen presence location is ranked higher 
than a randomly chosen background point. Note that AUC 
is traditionally used to determine how the model distin-
guishes between presences and absences, but with PO data 
AUC compares presences with background points.

As an alternative to AUC, creating binary, presence– 
absence predictions is useful for fit metrics based on  

unknown. To determine if sampling bias is a problem, one 
can compare the distribution of sampled (TGS) locations 
to the distribution of background locations in environmen-
tal space (Supplementary material Appendix 5, Fig. E1). If 
these distributions are similar, then sampling bias is negli-
gible for this choice of background. Alternatively, one could 
detect sampling bias by building a model with potentially 
biased samples and evaluating the predictions against a spa-
tially independent data set (so long as both data sets do not 
contain the same bias; Anderson 2012, Syfert et al. 2013). 
Accurate predictions imply negligible sampling bias.

E. Types of output

How it works
MaxEnt produces three different types of output for its 
predictions: raw, cumulative and logistic. All three output 
types are related monotonically, so rank-based metrics for 
model fit (e.g. AUC) will be identical (Elith et al. 2011). 
However, the output types have different scaling that leads 
to different interpretations and to prediction maps that 
appear very different visually (Supplementary material 
Appendix 6, Fig. F2).

MaxEnt’s raw output is interpreted as an ROR. The 
ROR sums to unity if all locations on the landscape are 
included in the background. Cumulative output assigns a 
location the sum of all raw values less than or equal to the 
raw value for that location and rescales this to lie between 
0 and 100. Cumulative output can be interpreted in terms 
of an omission rate because thresholding at a value of c to 
predict a presence/absence surface will omit approximately 
c% of presences (Phillips and Dudik 2008). Logistic output, 
denoted L(z), uses transforms the raw output, as (Phillips 
and Dudik 2008):

L z e ezl zl( ) /( )t tr r1t  (10)

where r is the relative entropy of P*(z(xi)) to Q(z(xi)) (Eq. 4). 
Phillips and Dudik (2008) propose that t can be interpreted 
as the probability of presence at ‘average’ presence locations 
and that logistic output can be interpreted as probability of 
presence. MaxEnt does not fit a value of t from the data, but 
arbitrarily assumes t  0.5 as the default (Elith et al. 2011), 
which can have drastic consequences on the predicted prob-
abilities assigned to each location (Supplementary material 
Appendix 6, Fig. F1; Royle et al. 2012).

How to choose
We recommend a) using raw output whenever possible, 
because it does not rely on post-processing assumptions; b) 
cumulative output when interpretations relate to omission 
rate (e.g. drawing range boundaries); c) avoiding logistic 
output because it is based on strong assumptions about the 
value of t. Note that comparison or combining any output 
types among species is problematic unless the species have 
similar population density because species with similar spa-
tial distributions may have very different prevalence (see Box 
2 in Elith et al. (2011)).

Raw output is useful for comparing different models for 
the same species using the same background samples. Raw 
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tions about appropriate threshold values and not attributes 
of the species distribution.

IV. Conclusions

Differences in background sample selection, feature selec-
tion, sampling bias, and model output and evaluation funda-
mentally influence biological inference. This is precisely why 
Phillips and colleagues have gone to the trouble of allowing 
such flexible settings in MaxEnt. However, choosing MaxEnt 
settings in relation to the specific questions and data limita-
tions should be the default approach rather than the current 
standard practice of simply adopting the default settings.

We suggest the following general protocol, in combi-
nation with our more specific suggestions above. First, we 
emphasize that modeling decisions should be taxon-specific 
and study goal-specific, and that our recommendations rep-
resent only a starting point. Second, we emphasize that one 
should always explore how different setting choices affect 
predictions and report these; if predictions show substantial 
differences across settings, it is critical to have a strong justi-
fication for the specific setting choice. Finally, the difficulty 
in evaluating PO models (section III.F) highlights the need 
for strong a priori justification of settings; while we may be 
unable to objectively evaluate a model we can ensure that it 
accurately reflects our assumptions and hypotheses.

Each of the decisions discussed in section III must be 
addressed for any modeling exercise. Sampling bias repre-
sents the greatest challenge for PO models. Sampling bias 
fundamentally disguises the biological pattern of interest, 
while other modeling decisions only affect the representa-
tion of that pattern. Conditional on accounting for sampling 
bias, we highlight some specific challenges for using MaxEnt 
for four common types of studies.

1) Projecting future species distributions. Projecting 
future species distributions, typically under climate change 
scenarios, usually involves extrapolating models to novel 
combinations of environmental variables (Elith et al. 2010, 
Webber et al. 2011). We believe such projections should be 
treated with extreme caution when derived from PO models. 
MaxEnt functional forms can either be ‘clamped’ at constant  
probabilities when projected into novel environments (e.g. 
Fig. 1) or they can simply be extended (in environmental 
space). We suspect that both options are unlikely to reflect 
biological reality in many, if not most cases. It is also criti-
cal to appreciate how the different assumptions made about 
background sampling and functional forms for response 
curves might influence extrapolated predictions. Insights 
into the sensitivity of extrapolated projections to different 
assumptions could be obtained by analyzing the predictions 
from an ensemble of models that consider the range of pos-
sible assumptions. We advise against using future projections 
as ‘data’ for subsequent analyses without recognizing these 
limitations.

2) Characterizing the niche and interpreting the influ-
ence of predictors on the distribution. When interest lies 
in the importance of predictors, it is critical that models 
have response curves that are sufficiently simple to be read-
ily interpreted. The features retained by complex models are 
sensitive to which other predictors are included in the model 

confusion matrices (Liu et al. 2005) or displaying simple 
maps. Thresholding makes continuous output binary by 
choosing a value of the ROR below which a species is con-
sidered absent and above which it is considered present. 
MaxEnt provides a number of methods to choose the value 
of the threshold, including minimum predicted value at a 
presence location, equal sensitivity and specificity on train-
ing data, and arbitrary values with user-specified omission.

How to choose
We recommend evaluating models based on their predictive 
accuracy on statistically independent cross validation data 
sets using fit metrics based on sensitivity (correctly predicted 
presences) and avoiding thresholding whenever possible. 
Cross-validation may be preferable to penalty functions for 
assessing model generality because it can be challenging to 
determine the appropriate strength of the penalty. K-fold 
cross validation is appealing because it uses the data efficiently 
and enables one to report the range, standard error, etc.,  
of any model fit metrics over the k folds. K-fold cross- 
validation simultaneously allows one to assess uncertainty in 
predictions, another focus of model evaluation. Disadvantages 
of using cross validation, are that only part of the data can 
be used for model fitting and that it is challenging to obtain 
test data that is statistically (spatially) independent of train-
ing data (but see Hijmans 2012, Wenger and Olden 2012). 
Spatially correlated folds can lead to overestimates of model 
performance and underestimates of the standard error of 
predictions (Anderson and Raza 2010).

We offer a few cautionary notes on the use of AUC, but 
recognize the lack of alternatives for PO models (Hernandez 
et al. 2006, Lobo et al. 2008). For PO data, high AUC val-
ues indicate that the model can distinguish between presences 
and potentially unsampled locations (background), which is 
not necessarily a relevant distinction because the background 
sample contains both presences and absences. AUC penalizes 
for prediction beyond presence locations, which may be mis-
leading when modeling a potential distribution, particularly 
if sampling effort is low. Since AUC is rank-based, compari-
sons among models are only valid when those models were 
built for the same landscape, background sample and species 
while using the same test data (Lobo et al. 2008, Elith et al. 
2011). AUC increases when including more background loca-
tions that are trivial to distinguish from presence locations, 
but does not provide any additional ecological information, 
and can produce misleading measures of fit (Lobo et al. 2008, 
Anderson 2012). Thus AUC is most appropriate for species 
near range equilibrium, when sampling intensity is high, and 
background choice is based on biology.

Thresholding is problematic because choosing biologically 
meaningful thresholds may depend on prevalence or popu-
lation density, which is typically unknown. Thus, arbitrary 
threshold values should not be used (e.g. interpreting logis-
tic output  0.5 to mean more likely than not). Measures 
based on specificity (the proportion of absences correctly 
predicted) should be avoided because background points 
are not equivalent to absences (e.g. Kappa and the True  
Skill Statistic). Thresholding is unnecessary in many appli-
cations, and embracing the continuous and probabilistic 
nature of predictions avoids undue confidence in predictions. 
Often, thresholded predictions reflect researcher’s assump-
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(Supplementary material Appendix 4, Table D1). Simple 
models allow one to inspect coefficients to infer importance 
and, given the relationship between MaxEnt and generalized 
linear models (Renner and Warton 2012), are more amena-
ble to hypothesis testing to distill the primary environmental 
drivers of species’ ranges.

3) Planning conservation measures. For conservation 
planning, it is typically important to know where the species 
actually occurs. This could lead to a tendency to produce 
models that predict occurrences well, but at the expense of 
complex response curves and potential over-fitting. We rec-
ommend against using MaxEnt to obtain the most accurate 
occurrence predictions without controlling for model com-
plexity and consequent over-fitting. We also recommend 
against the common practice of thresholding predictions 
to identify predicted presences, due to the challenge of pre-
dicting probability of presence from the RORs produced by 
MaxEnt. Obtaining a threshold may be necessary for certain 
applications, in which case we advise reporting the sensitiv-
ity of the result to the chosen threshold and avoid at all costs 
drawing conclusions that rely on the adoption of a specific 
threshold. In spite of these limitations, PO data are sufficient 
for applications that require ranking locations by suitability. 
However, habitat suitability predictions can indicate where 
the species is most likely to occur but it cannot determine, 
e.g. whether the best habitat contains the species in 90% of 
samples, or only 10%. This is particularly problematic when 
trying to delimit a range boundary or the likelihood of find-
ing an individual, and is compounded when trying to com-
bine predictions for multiple species to obtain estimates of 
diversity (cf. Raes et al. 2009).

4) Understanding macroecological patterns. Studies of 
macroecological patterns typically involve running the same 
analyses on many species. However, time and resource con-
straints can make it impractical to perform species-specific 
tuning (Phillips et al. 2006). In such circumstances, one 
could argue for using default settings, although we advise 
against this. The large datasets used in macroecological stud-
ies are usually obtained from diverse data sources which may 
be likely to be contain sampling bias (e.g. museum data). 
Fortunately, the large data repositories used in macroecologi-
cal studies naturally lend themselves to building TGS models 
for sampling bias. We strongly recommend investigating the 
sources of sampling bias within the different datasets in case 
it differs between species (Syfert et al. 2013). It is also likely 
to be impractical to closely inspect the response curves for 
individual species in macroecological studies. We therefore 
advise building simpler models with fewer feature classes 
and using stronger regularization to minimize the chances 
of overfitting.

The ease of changing MaxEnt’s default settings allows 
modelers to better explore their data. For an overwhelming 
proportion of Earth’s biodiversity, only PO data is avail-
able, so the best option is often to build PO models care-
fully while understanding their limitations. However, due to 
issues with sampling bias, PO data are primarily useful for 
exploratory analyses, which can help to inform structured 
survey strategies (e.g. PA or demographic) or help to formu-
late hypotheses. PO data, and consequently MaxEnt, may 
be best used for helping to ask better questions instead of 
answering them.
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