

ENVIRON 761:

Fuzzy Logic and GIS

Instructor: John Fay

Who in this picture is **tall**?

Who is **short**?

Who is **average**?

■ Binary logic → Output is 1 (true) or 0 (false)

Tall > 6'

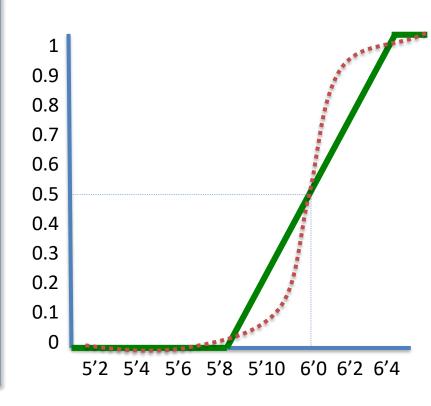
Name	Height	Tall (binary)
Natalie Portman	5'3"	0
Scarlett Johansson	5'3"	0
Haley Atwell	5'7"	0
Mark Ruffalo	5'8"	0
Cobie Smeulders	5'8"	0
Robert Downy Jr.	5'8.5"	0
Don Cheadle	5'8.5"	0
Jeremy Renner	5'10"	0
Chris Evans	6'	0
Tom Hiddleston	6'2"	1
Chris Pratt	6'2"	1
Samuel L. Jackson	6'2.5"	1
Chris Hemsworth	6'2.75"	1
Dave Bautista	6'4.5"	1

- Fuzzy logic is an alternative to binary logic.
- Outputs are not limited to the sets of 1 and 0.
 - e.g. Tall or not tall
- Instead, it assigns fuzzy values based on degree of membership to the sets of 1 and 0...
 - e.g. 80% tall & 20% not tall
- Fuzzy values are assigned based on <u>fuzzy membership</u> functions...

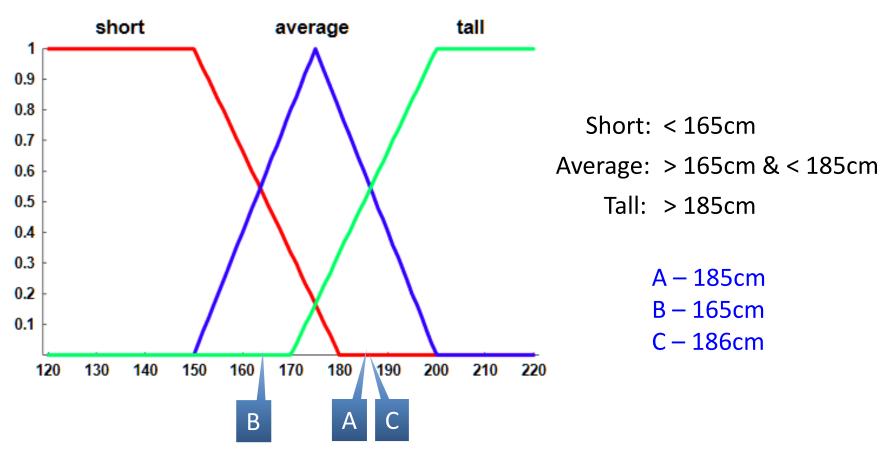
Sorites paradox:

If I remove one sand grain from a pile, it's still a pile, but if I carry on, it's soon not a pile...

At what point is a pile no longer a pile?


Tall > 6'

Name	Height	Tall (binary)	Tall (fuzzy)	
Natalie Portman	5'3"	0	0.00	
Scarlett Johansson	5'3"	0	0.00	□ Definitely not ta
Haley Atwell	5'7"	0	0.00	
Mark Ruffalo	5'8"	0	0.20	
Cobie Smeulders	5'8"	0	0.20	
Robert Downy Jr.	5'8.5"	0	0.25	
Don Cheadle	5'8.5"	0	0.25	
Jeremy Renner	5'10"	0	0.30	
Chris Evans	6'	0	0.50	
Tom Hiddleston	6'2"	1	0.60	
Chris Pratt	6'2"	1	0.60	├ Mostly tall
Samuel L. Jackson	6'2.5"	1	0.70	iviostry tan
Chris Hemsworth	6'2.75"	1	0.80	ال
Dave Bautista	6'4.5"	1	1.00	→ Definitely tall


How are fuzzy values calculated?

Answer: Membership functions

Name	Uoight	Tall (hinawı)	Tall (fuggy)
Name	Height	Tall (binary)	Tall (fuzzy)
Natalie Portman	5'3"	0	0.00
Scarlett Johansson	5'3"	0	0.00
Haley Atwell	5'7"	0	0.00
Mark Ruffalo	5'8"	0	0.20
Cobie Smeulders	5'8"	0	0.20
Robert Downy Jr.	5'8.5"	0	0.25
Don Cheadle	5'8.5"	0	0.25
Jeremy Renner	5'10"	0	0.30
Chris Evans	6'	0	0.50
Tom Hiddleston	6'2"	1	0.60
Chris Pratt	6'2"	1	0.60
Samuel L. Jackson	6'2.5"	1	0.70
Chris Hemsworth	6'2.75"	1	0.80
Dave Bautista	6'4.5"	1	1.00

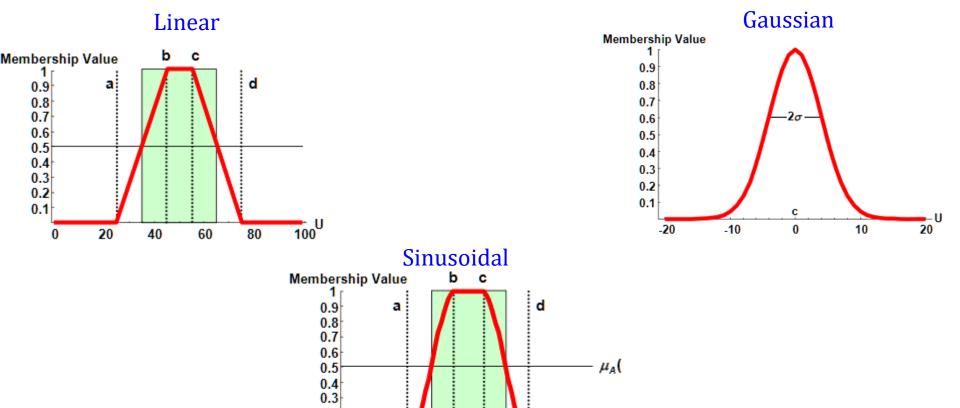
Membership functions: multiple classes

binary

 Short
 Average
 Tall

 A
 0
 1
 0

 B
 1
 0
 0


 C
 0
 0
 1

fuzzy

	Short	Average	Tall
A	0.00	0.60	0.50
В	0.50	0.60	0.00
C	0.00	0.56	0.53

Fuzzy membership functions

Transform "crisp" values into values between 0 and 1, indicating strength of membership in a set...

Fuzzy inference

In binary logic:

■ Premise 1: If x = A, then y = B

■ Premise 2: x is A

■ Conclusion: y is B

- If grass is wet, it has rained.
- The grass is wet, therefore it has rained.

Fuzzy inference

- In fuzzy logic:
 - Premise 1: If x = A, then y = B
 - Premise 2: x is A' (an acceptably likely member of A)
 - Conclusion: y is B' (an acceptably likely member of B)

- If grass is <u>long</u>, I should mow.
- The grass is fairly long, therefore maybe I'll mow
- The grass is really long, I'd better mow right now!

Fuzzy inference: more conditions

If grass is long and it isn't too hot, I should mow?

Rules:

Grass is long, not too hot:
I should mow now!

Grass is not very long, not too hot: I'll mow later.

Grass is long, too hot:
I may mow now.

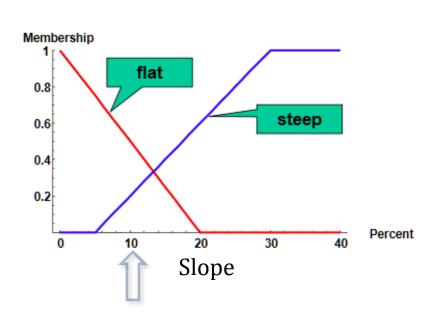
Grass is not very long, too hot:
I'll mow later.

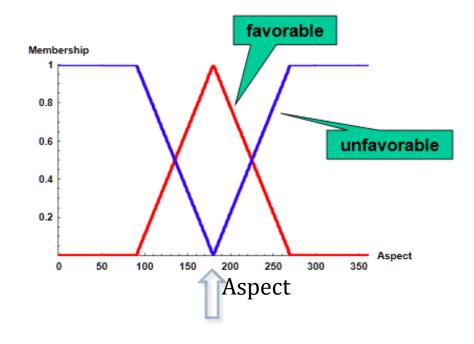
Another example...

Risk analysis based on degrees of risk ranging from 1 (low risk) to 4 (very high risk).

- If slope is flat
- If slope is steep
- If slope is flat

- & aspect is **favorable**,
- & aspect is **favorable**,
- & aspect is unfavorable, then risk is 1.
- If slope is steep & aspect is unfavorable, then risk is 4.


Fuzzy factors


- then risk is 1.
- then risk is 2.

Consequence

Another example...

Fuzzy memberships:

Slope of 10% and aspect of 180°

Flat and Favorable
Steep and Favorable
Flat and Unfavorable
Steep and Unfavorable

	Slope (s)	Aspect (a)
Rule1	0.5	1
Rule2	0.2	1
Rule3	0.5	0
Rule4	0.2	0

Computing overall scores..

- Compute the *minimum score* (conservative)
- "Conclusion" is (score * consequence)

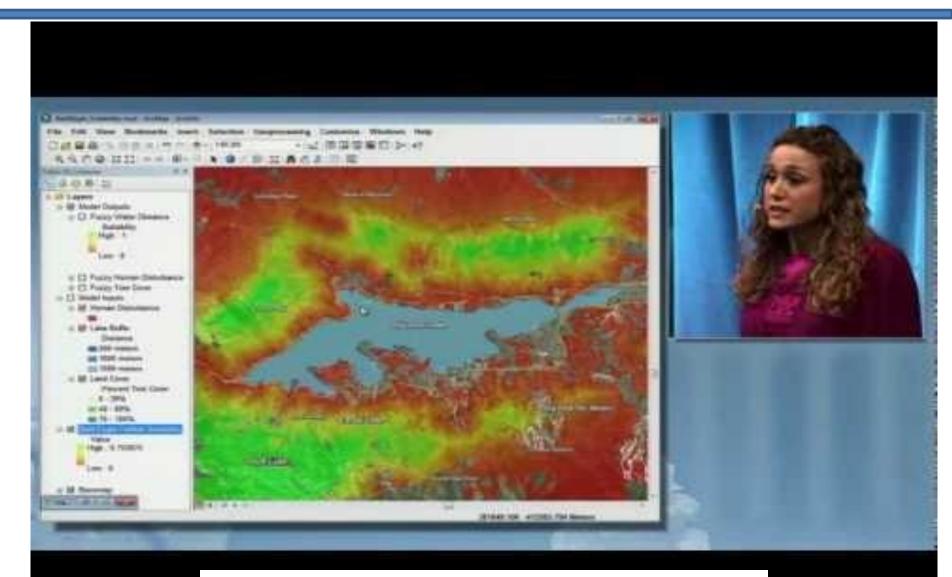
Consequences

Rule 1...risk is 1.

Rule 2...risk is 2.

Rule 3...risk is 1.

Rule 4...risk is 4.


For a slope of 10 percent and an aspect of 180 degrees we have the following results:

	Slope (s)	Aspect (a)	Min(s,a)	حرن	Conclusions
Rule1	0.5	1	0.5	1	0.5
Rule2	0.2	1	0.2	2	0.4
Rule3	0.5	0	0	1	0
Rule4	0.2	0	0	4	0

For the final result we get
$$c' = \frac{0.5 + 0.4 + 0 + 0}{0.5 + 0.2 + 0 + 0} = 1.29$$
, which means a low risk.

- "Defuzzification": divide Σ (conclusion) by Σ (min score)
 - It's a weighted sum of the risk (1 thru 4 in this case)

Fuzzy Analysis in ArcGIS

https://www.youtube.com/watch?v=Hd13H0XO0LU

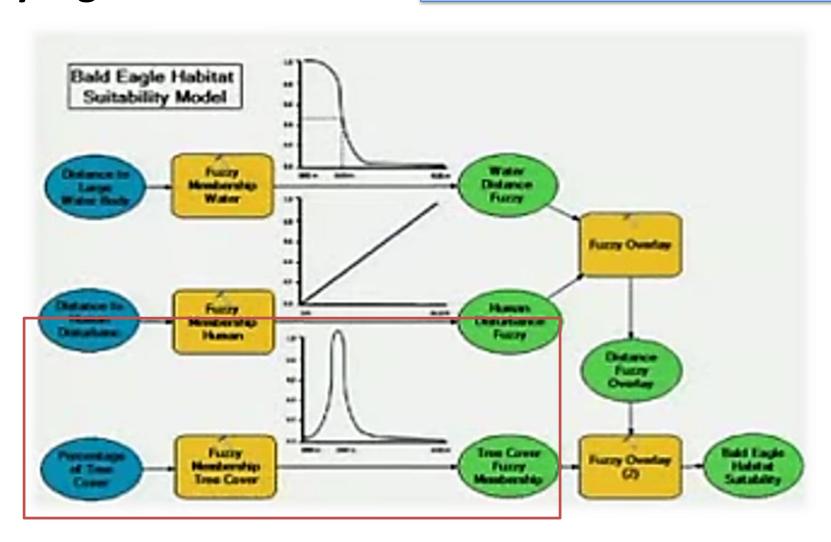
- Land cover
 - "Not too sparse and not too dense..."
 - Areas within 40 and 70% forest cover...

- Water
 - "Like to be close to water"
 - 500, 1000, 1500 m buffer...

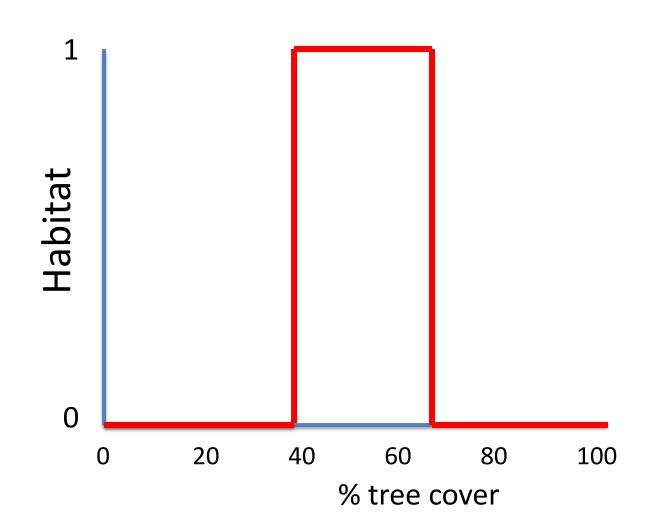
- Human disturbance
 - "Far from from urban areas, roads, etc..."

Binary logic:

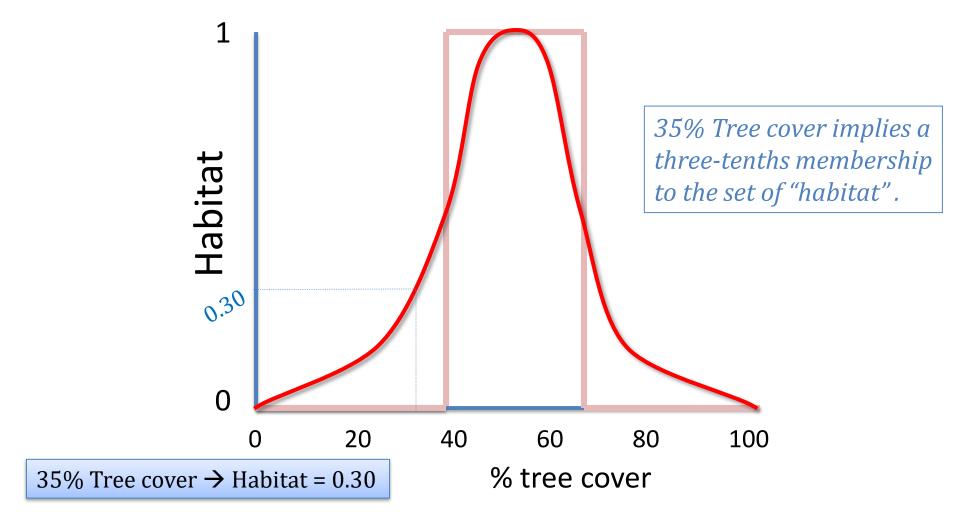
Resulting pixel values are either 1 or 0

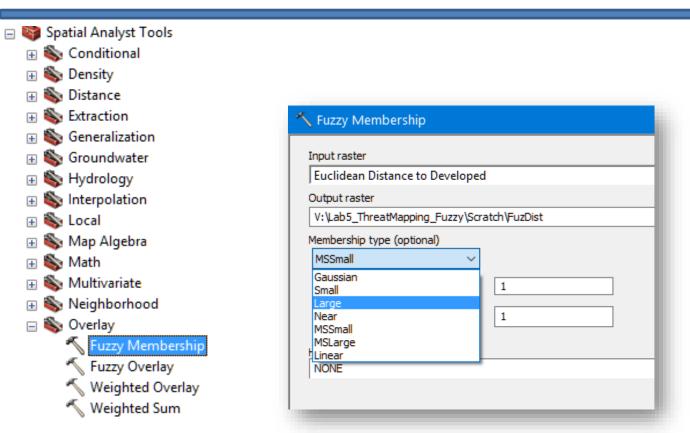

Habitat = 1 if:

- > 40% forest&
- < 70% forest&
- < 1000 m of lake or river&
- > 1500 m from developed area

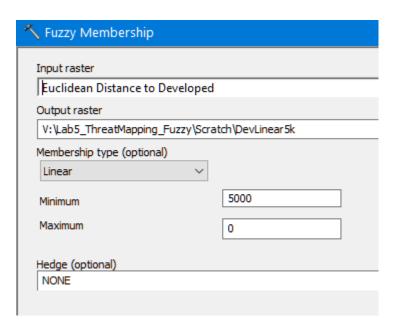

Otherwise, Habitat = 0

Fuzzy logic:


Results are a *continuum* between 1 and 0


Binary logic - Forest:

Fuzzy logic - Forest:


Fuzzy membership functions - ArcMap

Fuzzy membership functions - ArcMap

Linear:

 A linear increasing or decreasing membership between two inputs.

Fuzzy analysis – Pronghorn

- Criteria for unthreatened habitat:
 - Far from developed areas
 - Far from power lines
 - Few nearby roads
 - Mostly open land

Fuzzy analysis – Pronghorn

- Criteria
 - Far from developed areas
 - "Far": > 5000 m, with linear response
 - Far from power lines
 - "Far": > 6000 m, with sigmoidal response
 - Few nearby roads
 - "Few": < 3km per, sq. km with linear response
 - Mostly open land cover
 - 60% to 90% herbaceous or scrub within 1km

Conclusions

- Fuzzy analysis allows us to soften the impact of somewhat arbitrary cutoffs (e.g. 1km from roads).
- We can do a bit of fuzzy analysis (and did do this) by reclassifying continuous values (e.g. distance from roads) into non-binary classes.
- Alternatively, we can apply fuzzy membership functions, but what function to use involves a different set of assumptions.
- We still need to interpret how to combine the outputs (fuzzy overlay).
- In short, fuzzy analysis doesn't really solve our problem of involving subjective analysis; the subjectivity is just used elsewhere.
- However, fuzzy analysis offers new ways to break down these problems and use decision analysis techniques in our methods.