

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Elevation, Terrain, & Ecology (II): Terrain Analyses

Instructor: John Fay

Elevation, terrain & ecology: Overview

- I. Ecohydrology & conservation
 - Surface terrain and the hydrologic cycle
 - GIS techniques for modeling surface flow using a DEM

- II. Vegetation patterns across ecological gradients
 - Properties of a terrain that drive these gradients
 - GIS techniques to derive surface properties from a DEM

Vegetation & topographic position

Vegetation in geographic space

The Smokies (Whittaker 1956)

FIG. 21. Topographic disposition of vegetation types. View of idealized mountain and valley, looking east, with 6500-ft peak bearing subalpine forest on left, lower 5500-ft peak covered up to summit bald with deciduous forest on right. Vegetation types: BG—Beech Gap OH—Oak-Hickory Forest

CF—Cove Forest F—Fraser Fir Forest GB—Grassy Bald H—Hemlock Forest HB—Heath Bald OCF—Chestnut Oak-Chestnut Forest OCH—Chestnut Oak-Chestnut Heath OH—Oak-Hickory Forest P—Pine Forest and Pine Heath ROC—Red Oak-Chestnut Forest S—Spruce Forest SF—Spruce-Fir Forest WOC—White Oak-Chestnut Forest

Vegetation in parameter space

FIG. 19. (Vegetation of Great Smoky Mountains, pattern of Eastern Forest System.)

tern of Boreal Forest System.)

(Whittaker 1956, p58)

Vegetation in parameter space

Drivers of biodiversity

Butterfly species richness & topography...

At finer scales, it's more complicated...

(Fleishman, et al. 2000)

Landscape scale gradient analysis

Landscape-scale: temperature

Warmer on SW facing slopes (radiation load)

Cold air drainage (at night)

Cooler at higher elevations

Cooler on windward side (usually W)

latitude
elevation (lapse rate)
topographic exposure (via radiation or cold-air drainage)
air moisture content (dist. to streams, lakes, oceans)

Cooler near water

Google earth

Landscape-scale: solar radiation

- latitude (declination)
- elevation (via clouds & atmospheric effects)
- topographic exposure

Landscape-scale: precipitation

- longitude (due to airmass dynamics and N-S mountain ranges)
- elevation (orographic lifting)
- storms (patchy)

Landform & edaphic factors

http://www.geocases2.co.uk/printable/soil.htm

- soils/parent material
- slope
- topographic position

Landscape scale phenomena: proxies & GIS

Task:

Find useful predictive <u>proxies</u> for broad-scale applications that are correlated with the actual processes

- temperature
- precipitation
- radiation load
- drainage, soils

Learn to think like a computer...

Temperature & Precipitation \rightarrow Elevation

Temperature & Precipitation \rightarrow Elevation

Radiation \rightarrow Hillshading

Moisture \rightarrow Topographic convergence

TCI = *ln*[upslope area/*tan*(slope)]

Landscape variables derived from DEM

Digital Elevation Models

Surface analyses from DEM data

Tool	Description
<u>Aspect</u>	Derives aspect from a raster surface. The aspect identifies the downslope direction of the maximum rate of change in value from each cell to its neighbors.
<u>Contour</u>	Creates a line feature class of contours (isolines) from a raster surface.
Contour List	Creates a feature class of selected contour values from a raster surface.
<u>Contour with</u> <u>Barriers</u>	Creates contours from a raster surface. The inclusion of barrier features will allow one to independently generate contours on either side of a barrier.
<u>Curvature</u>	Calculates the curvature of a raster surface, optionally including profile and plan curvature.
<u>Cut Fill</u>	Calculates the volume change between two surfaces. This is typically used for cut and fill operations.
<u>Hillshade</u>	Creates a shaded relief from a surface raster by considering the illumination source angle and shadows.
<u>Observer</u> Points	Identifies which observer points are visible from each raster surface location.
Slope	Identifies the slope (gradient, or rate of maximum change in z-value) from each cell of a raster surface.
<u>Viewshed</u>	Determines the raster surface locations visible to a set of observer features.

Topographic Slope

Max. rate of change [in elevation] between a cell and its 8 neighbors

Fits a plane to the z-values of a 3 x 3 cell neighborhood around the processing or center cell. The slope value of this plane is calculated using the average maximum technique

Aspect

Downslope direction of the maximum rate of change in [elevation from] each cell to its neighbors

Uses same plane used to derive slope, calculates the downslope angle of this plane, and converts it to a compass direction

Hillshade

Obtains the hypothetical illumination of a surface by determining illumination values for each cell in a raster

Assigns values (0–255) based on how much light from the hypothetical light source is received (based on aspect and shadowing) of the cell amongst its neighbors.

Analytical hillshading (for insolation)

Set sun position to (for N. America):

- ...warming part of day (afternoon): Azimuth = 225° (SW)
- ...average high point in sky (during growing season):
 Altitude = 30°

Alternatively, use solar calculators get precise solar angle: <u>http://www.esrl.noaa.gov/gmd/grad/solcalc/</u>

Other insolation tools

Tool	Description	
<u>Area Solar</u> Radiation	Derives incoming solar radiation from a raster surface.	
Points Solar Radiation	Derives incoming solar radiation for specific locations in a point feature class or location table.	In the Radiation
<u>Solar</u> <u>Radiation</u> <u>Graphics</u>	Derives raster representations of a hemispherical viewshed, sunmap, and skymap, which are used in the calculation of direct, diffuse, and global solar radiation.	Incred Radiation

http://www.fs.fed.us/informs/solaranalyst/solar_analyst_users_guide.pdf

Topographic Convergence Index (TCI)

Estimates moisture from upstream area & slope

- The more area a location drains, the more surface runoff is likely to pass through it.
- The steeper the location, the less likely moisture stay put

$$ln(\frac{Accumulation}{tan(slope})$$

Topographic Position

Calculates local convexity and concavity by comparing a cell's elevation relative to its neighbors.

Mean elev (3x3): = (50+45+50+30+30+30+8+10+10)/9 = 29.2

30 – 29.2 = 0.8 = *exposed* (*convex*)

High : Exposed

Low : Sheltered

Topographic Position

http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf

Topographic position

Adjusting the neighborhood reveals different features...

Topographic Position and Landforms Analysis Andrew D. Weiss, The Nature Conservancy

Slope position

By thresholding the continuous TPI values **at a given scale**, and checking the slope for values near zero, landscapes can be classified into discrete slope position classes.

Slope position

Fig. 3b – tpi300 thresholded by standard deviation units into 6 slope position classes

Fig. 3c – tpi2000 thresholded by standard deviation units into 6 slope position classes

Slope position

Choosing thresholds in calculating Slope Position

Table 1

Classification of the landscape into slope position classes.

Morphologic class	Weiss (2001)	Northwestern Belgium
Ridge	$z_0 > SD$	$z_0 > SD$
Upper slope	$SD \ge z_0 > 0.5SD$	$SD \ge z_0 > 0.5SD$
Middle slope	$0.5SD \ge z_0 \ge -0.5SD, \text{ slope} > 5^\circ$	Pos. values: $0.5SD \ge z_0 \ge 0$
Flat area	$0.5SD \ge z_0 \ge -0.5SD, \text{ slope} \le 5^\circ$	Neg. values: $0 > z_0 \ge -0.5SD$
Lower slope	$-0.5SD > z_0 \ge -SD$	$-0.5SD > z_0 \ge -SD$
Vallev	$z_0 \le -SD$	$z_0 \le -SD$

J. De Reu et al. / Geomorphology 186 (2013) 39-49

Land form

Land form

- Canyons, deeply incised streams Midslope drainages, shallow valleys Upland drainages, headwaters
- U-shaped valleys
- Plains
- Open slopes
- Upper slopes, mesas
- Local ridges/hills in valleys
- Midslope ridges, small hills in plains
- Mt tops, high ridges

Surface analyses: summary

What's next

In lab: create models to calculate these terrain surface parameters

 <u>In lecture</u>: move forward with hydrology tools to examine riparian zone dynamics

