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Preface

Landscape ecology is a big, expansive discipline or, rather, a grand Venn diagram
that highlights the intersections among a wide range of disciplines from geography
to ecology to psychology. Perhaps not surprisingly, textbooks on landscape ecology
either tend to be rather conceptual and superficial, or they tend to be narrowly
specific in their focus. For many years I have struggled to find the right balance in
teaching graduate and professional students about the ecological foundations of and
essential tasks in doing landscape ecology.

My solution has been two books. The first, Agents and Implications of Landscape
Pattern: Working Models for Landscape Ecology (Urban 2023), is an ecology book
that emphasizes how ecological processes and patterns play out at the spatial scale of
landscape management. There are two main themes in this. The first is how finer-
scale processes—processes that ecologists typically embrace at the scale of field
studies—are integrated into the larger spatial scales at which management happens.
The second theme is how to deal with the spatial heterogeneity and couplings that we
encounter when working at these larger scales.

In this companion book, I turn to the tools of the trade: the technical skills that
practitioners need in order to do the work of landscape ecology and management.
The problem, of course, is that landscape ecology encompasses a variety of tasks
borrowed from other disciplines—or entire disciplines in themselves—and it is hard
to find a text that weaves these different threads into a whole cloth. For example,
landscape ecologists use the techniques of species distribution modeling, ordinations
for summarizing multivariate trends in inventory and monitoring data, structured
decision-making in prioritizing sites for management, and various models in fore-
casting landscape change. Each of these areas is a well-developed discipline, but
these are only partially overlapping areas of expertise. This text is my attempt to
bring these tools together in a coherent framework for landscape analysis and
management.

Landscape management entails a mix of expertise in the natural and social
sciences. For example, conservation practice ranges from community-level negoti-
ations that rally stakeholders around management aims and ratify core values, to the
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ecology of identifying conservation targets based on their perceived conservation
value, to the financial and political dealings that protect land (including the legalities
of land use policies, easements, and the tax implications of donor contributions of
land value as well as the opportunity cost of foregone property taxes or other land
uses), to the long-term stewardship and management of protected lands. Managing
working lands (i.e., for agriculture and forestry) involves a similarly wide range of
activities. The cultural, economic, and policy context for landscape management
varies substantially across regions, even within the USA; these factors are even more
heterogeneous in other countries. While recognizing the critical importance of
integrating all of these perspectives and disciplines, I have framed this book as
ecological. This reflects my own experience, but it also reflects my belief that
ecology is at the core of landscape management when this is practiced as a science-
or evidence-based approach.

This ecology can and should be informed by stakeholder values, and the results of
ecological analyses can and should be translated into terms that can be appreciated
by an audience that does not have the same technical background that this book
affords. To this end, I have tried to insert, where appropriate, pointers to where other
disciplines or community engagement should be brought into the process. Land-
scape management is, by its nature, an iterative process in which we recursively set
goals and objectives, attempt to realize these, and take stock of how we are doing.

Adaptive Management and Landscapes

The fundamental tasks of landscape ecology all share the confounding constraints
that the study areas tend to be unmanageably large and the data are often disap-
pointingly sparse in coverage or thin in information content. Thus, many tasks
present themselves as logistical challenges, challenges that invite modeling as a
framework for marshaling available information for maximum efficiency. Another
consequence of these logistics is a rather high level of uncertainty in landscape-scale
applications, an uncertainty compounded by the lack of control over large-scale
drivers (weather and climate, disturbances, land use change).

In this book, I adopt a model-based approach to landscape ecology. This
approach invites the framework of the adaptive management' cycle: plan, act,
monitor, react (Fig. 1). In this, an initial model—a declared hypothesis about how
the system works—constitutes the plan. The model might be rather simple. For
example, an inventory of a species of concern (say, a rare bird) might be based on an
expert opinion on what sorts of habitat should support the species. But the model
could also be more explicit about the factors shaping the distribution of the target

"There is an enormous literature on adaptive management, including several classics (e.g., Holling
1978, Walters 1986, Lee 1993) as well as texts specialized on conservation and ecosystem
management. I assume here that readers are familiar with at least the basic tenets.
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species. For example, a bird habitat model that includes explanatory variables such
as patch edge/area ratios and isolation is more than a habitat model; it also invokes
higher-level hypotheses about biotic processes (interspecific interactions, dispersal)
that might influence species distribution beyond the constraint of the availability of
potential breeding habitat. Data collected in the field should test these hypotheses
explicitly, which leads directly to the monitor and react stages of adaptive
management.

I should emphasize here that my own conceptual models about landscapes—the
plans that might underpin the tasks presented here—are themselves elaborated
separately in the companion book (Urban 2023). While that book is not required
to appreciate this one, the conceptual models in the first book are intended to provide
a useful foundation for the tasks developed here.

In landscape ecology, the act stage of adaptive management might not be an
actual management intervention over large spatial extent; landscapes are simply too
large to do this scale of management routinely. Yet increasingly, management or
restoration activities are replicated at fine grain over large areas, subject to regional
or national policies. For example, fire management activities aimed at hazard
reduction are being implemented over much of the western United States and
elsewhere, and a great deal of restoration and stewardship is aimed at improving
habitat quality or connectivity as an aim of conservation practice. While the scale of
individual activities might not be large, the aggregate effect can be quite extensive.
Thus, it will be appropriate to examine these activities as landscape-scale manage-
ment experiments.

Often, landscape ecologists find themselves playing the role of detective, trying to
make inferences about past management or natural events that have shaped our
current landscapes. These instances are akin to experiments without proper controls,
or with controls contrived after the fact. For example, hydrologists try to select
matched “control” and “experimental” watersheds for retrospective analyses of the
impacts of land use change on water quality. We can envision this process of
attribution as contriving the plan and monitor stages of adaptive management around
a preexisting act. Assessing the impacts of habitat fragmentation on forest bird
communities is a similarly contrived, retrospective “experiment” into the impacts
of land cover change over decades. These are quasi-experiments.

Dynamic models of landscape change do not fit easily into the conventional cycle
of adaptive management. Rather than force this fit, I will note simply that dynamic
models can enrich the adaptive management framework by emphasizing the longer-
term temporal context of landscape change, whether natural or resulting from human
activities. Models also provide the capacity to conduct “virtual management exper-
iments” by exploring the possible consequences of alternative management scenar-
i0s. Given the logistical (and sometimes ethical) difficulties of conducting actual
management experiments at the landscape scale, this ability to assess model-based
acts—scenario analysis—is crucial to landscape ecology and management.

Ecological assessment is not a task of landscape ecology itself, but rather, a more
fundamental task aimed at verifying the working model that underlies research and
management. This assessment—the react stage—provides the follow-through that
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plan —— act ——— monitor —— react

revise

Fig. 1 The adaptive management cycle as an organizing framework for the tasks of landscape
ecology. Here, the plan consists of an explicit model of how we believe the system works (or a
hypothesis to be tested). The act might be large-scale management experiments, but also might be a
retrospective “experiment” contrived to make inferences about the impacts of prior landscape
events (disturbance, land use change). This stage also can include “virtual acts” as model-based
scenarios. The monitor stage includes initial inventory as well as follow-up monitoring, both
designed in accordance with the initial model (plan). The react stage amounts to integrated
assessment, in which observations collected from the system are evaluated with respect to the
model, and so which also tests the model itself

closes the adaptive management cycle, by informing us how to respond to our
observations. Importantly, this assessment must include a capacity to identify
significant departures from the expected, departures that would trigger a reactive
decision to revisit the initial model and revise it as suggested by the evaluation.

As much as I would like to structure this book in the framework of adaptive
management (and I have tried!), this has not worked very well for me. The awkward
fit stems from the reality that landscape management is not a linear flow as in Fig. 1
but more of a braided stream of tasks (Fig. 2).

Workflows

I think of this in terms of workflow paths, and different agencies who manage
landscapes are more or less invested in various paths. For example, a conservation
agency whose primary mission is land protection might focus largely on monitoring
the condition (and perhaps the connectivity) of protected lands, with most of the
tasks related to inventory and monitoring; the assessment is done relative to a
conceptual or formal model that spells out the objectives of the program. This path
(the middle path in Fig. 2) might also wish to forecast observed changes in the future.
By contrast, another conservation agency might be more invested in active steward-
ship and restoration of protected lands, implementing direct interventions to improve
habitat connectivity or condition (top path in Fig. 2). By contrast, another agency
might be more research-oriented and conduct experiments to test hypotheses about,
for example, the relative importance of habitat geometry or isolation as influences on
target species (bottom path in Fig. 2). These paths, of course, are not exclusive, and
many agencies that manage land probably do some of each of these.

I offer Fig. 2 not to denigrate adaptive management, as the classic cycle easily can
be embedded within any more complicated path in Fig. 2. Rather, I present the paths
because they underscore the sequencing of actual work on landscapes, and that these



Preface ix

prioritize protect, connect, restore
sample inventory monitor detect change |- forecast assess
analysis experiment

plan

Fig. 2 Flow diagram that organizes the fundamental tasks of landscape analysis and management
according to (nonexclusive!) management paths. For simplicity, recursive loops or feedbacks are
not drawn, though most of these tasks would naturally be iterative. All paths flow from an initial
conceptual model (the plan) that would inform inventory and monitoring, site prioritization, or
hypotheses to be tested

workflows are assembled from a rather small set of fundamental tasks. These tasks
include sampling, inventory and monitoring, site prioritization, and so on. The tasks
logically connect, in that the outputs from one task become the inputs of the
next task.

This braided-stream workflow of landscape analysis and management outlines
the content of this book. In the book, I present what I think are some fundamental
tasks in landscape ecology. These include sampling design, inventory and monitor-
ing, habitat classification or species distribution modeling, site prioritization, change
detection and forecasting, and ecological assessment. There are other tasks, to be
sure, but I believe these few provide a solid foundation.

Workflow Within Tasks

Just as the collective tasks of working with landscapes invite a logical workflow,
each of the individual tasks also has its own workflow. For example, species
distribution modeling (Chap. 2) involves fitting a statistical model of some form
(there are several options). But the setup before the statistics and the interpretation
and evaluation after model fitting are also crucially important: indeed, the pre- and
post-processing are often more work than the (statistical) processing itself. The same
is true of the other tasks.

In this book, I have tried to emphasize the logical workflow of conducting each of
the tasks highlighted in the chapters. While the details vary among tasks, there is
generally a flow from preparatory work and framing, data wrangling and editing, the
analysis itself, and then evaluating or interpreting the results—and then reporting all
of this. For most tasks, the setup is crucial, and if the analysis is set up thoughtfully,
the analysis itself is straightforward. Reporting includes a concise and precise
detailing of the methods, one that will meet the litmus test of reproducibility. But
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reporting also entails extracting appropriate figures and tables to communicate the
main results (and which bits are the main results is not always obvious!). Finally, the
narrative interpretation of the analysis must be in terms that a nontechnical audience
can understand and appreciate.

For most tasks, I summarize the workflow as a flowchart and the reporting in the
form of a checklist: which steps to follow, critical decision points, and reporting
requirements. These are often itemized as bulleted checklists:

Report any data transformations and explain why these were selected.

Analysis as Translation

Many analytic tasks are themselves exercises in translation. For example, in species
distribution modeling, we translate from ecological concepts to a statistical space,
and then back-translate into ecological terms. Sometimes, we also translate the
statistical model into geographic space, by mapping the predictions of the statistical
model in a geographic information system (GIS). Similarly, in site prioritization, we
begin in a conceptual space defined by stakeholder values and then translate these
into empirical indicator variables. We then do the analysis in an empirical space and
then back-translate to values. Again, the results are typically then mapped into a GIS
to help communicate those values.

In these chapters, I have tried to emphasize the individual steps in the workflow of
each task. Each task, in turn, is itself typically part of a larger workflow (Fig. 2).

Preview of Chapters

The fundamental tasks are organized in chapters that run more or less in a sequence
as implied in Fig. 2, but as the figure suggests there is not a single, simple workflow
that includes all the tasks. Further, some of the tasks require some more foundational
groundwork. The book is structured as follows.

In Chap. 1, we begin by collecting some data. In this, we encounter the funda-
mental issue with landscapes: they are too big to sample efficiently by leaving
coverage to chance (as with purely random samples). The alternative is to stratify
samples somehow: in space, over a conceptual model, or a combination of these.
This chapter begins by considering the basic elements of sampling design and then
extends these to large and heterogeneous study areas. By carefully specifying the
stratification, sampling designs can be tuned to a variety of applications ranging from
a simple inventory, to targeted monitoring programs, to quasi-experimental designs.
This chapter, on how to generate data, thus provides a foundation to subsequent
chapters.

Chapter 2 presents the ecological and statistical basis for species distribution
modeling (or habitat classification) and mapping, with a particular emphasis on
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applications that can be developed within the framework of a geographic informa-
tion system (GIS) and evaluated at landscape scales. This is perhaps the most
fundamental task in natural resource management. There are myriad statistical
approaches to species distribution modeling, and in this chapter, we consider just a
few alternatives while underscoring the common workflow logic of all such models.
In a larger sense, this task is a useful starting point for this book because this primary
task introduces most of the empirical complications that vex landscape ecology.
These issues stem from the nature of ecological data: they are noisy, multivariate,
redundant (the multiple variables are correlated among themselves), and almost
certainly structured spatially (autocorrelated). These complications motivate the
next few chapters.

Chapter 2 also introduces a narrative structure that is repeated in several subse-
quent chapters. In this, I illustrate the focal workflow with an extended example,
from data preparation through the actual analysis to post-processing and reporting. I
then mention alternative tools for the same application workflow. In some cases,
these alternatives are illustrated as a second example; in one chapter, the alternatives
are tightly tied to the main narrative but are included as an appendix to the chapter. In
a few cases, there is a lor of other information available—on alternative tools, or
details about tools featured in the chapter. These extra details are provided as digital
supplements to these chapters.

Having collected (virtually) some landscape-scale data in Chap. 1 and applied
these in Chap. 2 (with, perhaps, some frustration with the data), we then spend some
time exploring these data in preparation for the analytic and management tasks to
follow. In Chap. 3, we examine the nature of ecological data through exploratory
data analysis (EDA), and familiarize ourselves with the kinds of data sets that
ecologists typically use. This chapter also considers various editing or transforma-
tions of the primary data and how these might affect analyses. Ecologists often do
not analyze the raw data themselves, and all transformations of the data influence the
results of any subsequent analysis. So it will be good to pay attention to how we
might modify the data. More importantly, an understanding of the data garnered
through EDA will temper our interpretation of all subsequent analyses.

Ecological data are multivariate: We tend to collect data on multiple species as
they occur across our sampling locations, and we measure multiple environmental
variables at these same locations. Ecologists use two general approaches to dealing
with multivariate data. To illustrate general trends in multivariate data, ecologists use
ordinations of various kinds. These are the tools of the trade in gradient analysis, a
long tradition in community ecology. These are the topics of Chap. 4. As a
complementary approach, classification techniques are used to construct discrete
groups from ecological data. When the data are species, this results in community
types; if the data are environmental factors, the result is habitat types. Classification
techniques are covered in Chap. 5. This includes the techniques popular in commu-
nity ecology, but also methods such as image classification that are more common in
landscape ecology. Many of the tools covered in Chaps. 4 and 5, long popular with
ecologists, are seeing a new popularity under the rubric of “big data,” in ecology and
beyond.
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Sampling for inventory and monitoring can be extended to consider more
nuanced working models or hypotheses about species distribution patterns or other
ecosystem processes on landscapes. These designs lead to inferential tests of the
underlying model, a discussion begun in Chap. 1, revisited in Chap. 2, and consid-
ered more fully in Chap. 6. In Chap. 6, the emphasis is on statistical tests that are
sensitive to issues of spatial structure, embracing this as a feature that is interesting in
its own right rather than as a nuisance to be avoided (as we do in Chap. 2!). The main
tools for this are a logical extension of ordination techniques introduced more
generally in Chap. 4. This approach also includes tools used to partition variability
across multiple spatial scales.

Chapters 3, 4, 5 and 6 are a bit of a detour from the overall workflow of the book,
but an important side trip. One purpose of these chapters is to delve into the nature of
ecological data—to learn some common tools for dealing with such data, and to
address some analytic issues that arise repeatedly in ecological analyses. These
chapters also help develop skills for discovering, summarizing, and especially
communicating the main features of rich ecological data sets.

In Chap. 7, we address more explicitly the problem of correlations in multivariate
data sets, by embracing this complexity rather than distilling it into simpler ordina-
tion axes or classified types. Structural equation models (SEMs) are one method for
embracing the tangled web of correlations in ecological data sets, to depict a more
nuanced model of the interactions among variables. SEM, the modern incarnation of
path analysis, poses a pattern of interactions—interpreted as causal—that can
include indirect pathways among variables (e.g., XI causes X2 which then causes
Y). SEM often is invested in latent variables, which are constructs (e.g., “water
quality”) that are measured indirectly via indicator variables (e.g., turbidity or
nutrient loadings). This chapter picks up the concept of latent variables (aka factors)
from factor analysis in Chap. 4, and provides a bridge, via path models, to structured
decision-making as presented in Chap. 8.

Inventory (Chap. 1) provides a natural basis for site prioritization, the focus of
Chap. 8. In the simplest sense, a ranking of sites according to their modeled habitat
suitability (Chap. 2) provides for site prioritization. More typically, other factors
come into play. This chapter begins with the task of site selection for conservation
planning, reviewing the logic and computational algorithms used to select sites for
systems of nature reserves. The initial focus here is the minimum representation
problem: how to capture the most conservation targets (e.g., species or habitat types)
in the fewest sites or minimum total area. The minimum representation problem is
then extended to consider other factors such as species rarity, redundancy, and
habitat connectivity. This discussion is then generalized to other conservation targets
including watershed integrity and aesthetics (as viewsheds) and other ecosystem
services. This leads to an overview of structured decision-making and multi-criteria
decision analysis, the logical and analytic foundation of site prioritization in which
decisions must be made in contexts where any decision might generate co-benefits or
force trade-offs among competing objectives. Prioritizing ecosystem services also
broaches the issue of stakeholder values and their preferences for various
outcomes—which extends prioritization from ecological to social science.
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Monitoring consists of repeating a sampling or inventory program (Chap. 1). This
leads naturally to more formal models of landscape change, developed in Chap. 9.
To begin, we spend some time on trend detection in monitoring data: to interpret
change, we must first be sure that we are observing it. We might model landscape
change by simply describing the trends in various land cover types. But because
landscape area is constant, an increase in one land cover necessarily implies a
decrease in something else. That is, the model rightly should address all cover
types at once. One way to capture such changes is as a first-order Markov chain.
This model often is too simple to be realistic, but it serves as a useful point of
departure for more nuanced models that are too realistic to be simple. A sampling of
models used in landscape ecology illustrates the range of applications (and models)
used in the discipline. This chapter also provides a convenient platform for a more
general discussion of the role of models in ecology. This discussion is very much in
the spirit of the aphorism, All models are wrong but some are useful (Box 1976).

In Chap. 10, integrated ecological assessment provides the formal evaluation of
the working model reflected in the conceptual model that began this sequence of
tasks. The framework is multivariate, and ordination provides a set of tools designed
for this type of application. In this chapter, ordinations are used as a general
framework to summarize inventory, visualize monitoring data (including the effects
of natural disturbance or management activities), evaluate experimental treatments
(as a before/after, control/intervention design), and explore forecasts of landscape
change. This approach to assessment closes the cycle of adaptive management, and
also finishes the task-oriented coverage of this book.

Intended Audience

This book is essentially a course I have taught for many years to graduate and
professional students. My intent here is to provide a convenient reference for similar
courses, and for working professionals with a similar level of training. While some
familiarity with statistics is helpful, I have tried to present the material in a way that
does not presuppose that background. In my teaching, many of the example appli-
cations and lab exercises are done in the R computing environment (R Development
Core Team 2021%), but this book is not presented with that narrow focus. I hope that
the book is presented in such a way that the software-specific details of actual
implementation are not distracting in their omission.

While the book has a logical structure to it and the tasks are interrelated to some
degree, most of these chapters can be used as stand-alone references. Thus, teachers
or practitioners can skip around and use what they choose.

%I will cite R and its packages often throughout this book. The cited dates are rather arbitrary as they
change with each software update. That is, the citation dates could range from the 2010s to the
current year without much changing the intent or results.
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My aim here is to present the logic and protocol of the tasks, with an emphasis on
helping the user design, implement, interpret, and present the analyses in a way that
can be appreciated by a nontechnical audience. This reflects my opening comment
that landscape-scale work is typically done in collaboration with social scientists and
other team members, who will need to appreciate the takeaway results of the
analyses but not necessarily the technical details. In my own classes, I emphasize
this through writing-intensive exercises aimed at motivating the choice of tools,
explaining the conceptual basis and actual analysis, and presenting the results in a
compelling way. After all, technical prowess is not very useful if nobody else can
understand or appreciate it.

Teaching with This Book

I have packaged this material into semester-long courses in various ways over the
years. While I have recently packed the entire book into a single semester, I cannot
really recommend this packaging: there is simply too much material (I skip or gloss
over several topics in doing this).

Instead, I might recommend splitting this into multiple courses. Chapters 3, 4, 5
and 6 could easily comprise a course on “big data.” Many of the topics in this book
could easily be expanded into a single course. Especially, species distribution
modeling (Chap. 2) is an enormous topic that invites a deeper dive; I have taught
this as a full semester course using only Chap. 2 as a text.

I should note that I do not include GIS or remote sensing tools in this book. This is
largely because my faculty colleagues teach these as separate courses and my
students typically get this information in those classes. While I do refer to geospatial
data and applications in this book, I do not presume any technical GIS expertise of
the reader.

All of this is to say: there is a lot here, and users should feel free to pick and
choose. No matter the focus of particular applications, the other chapters in this book
can serve as handy references or background. While I feel comfortable with the
scope of information in this book, I have also included a section in each chapter that
points to additional resources. I hope readers will find this useful.
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Chapter 1 ®)
Sampling Designs for Landscapes Shex

Abstract Landscapes are large and heterogeneous, and so collecting data on land-
scapes puts a premium on efficiency. In this chapter, we begin with the basic
elements of sampling design and then apply these to inventory and monitoring.
These simple designs are then extended to hypothesis-driven sampling designs that
are more tightly coupled to inferential designs, especially ANOVA and partial
regression. A fundamental decision in sampling landscapes is whether to avoid
spatial autocorrelation or to embrace spatial structure explicitly in sampling. The
key to most sampling designs is deliberate stratification over the explanatory vari-
ables of interest, including space itself. Sampling design provides a foundation for
most of the tasks developed in subsequent chapters.

1.1 Introduction

Landscapes are large by most definitions and data at such scales are dearly bought.
Yet, science-based management demands decisions based on empirical evidence.
That means collecting data to support the analysis and application. Sampling designs
for landscape-scale applications must put a premium on efficiency: We will want to
retrieve as much information as possible from the sample measurements. That, in
turn, means giving careful thought to which data we need most crucially and then
designing a sampling scheme to focus on those data.

We can motivate this concern by considering how a simple sampling design
might play out in a study aimed at developing a species distribution model as
described in the following chapter. In the strictest case, this is a case/control design:
We would randomly visit a number of (independent) sample locations, and at each
location, we would tally the presence (case) or absence (control) of the focal species.
We would also measure a suite of candidate predictor variables at each location, and
then proceed to fit the model, which would distinguish the case from the control
samples. But for an uncommon species, this approach likely yields far more
absences than presences; indeed, for a rare species of conservation concern, we
might not encounter any presences at all: statistically correct, but not very informa-
tive and certainly not very efficient. There are more effective alternatives.
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2 1 Sampling Designs for Landscapes

The information content of samples will depend on the aims of the application,
and so it will be useful to consider some of the primary purposes of sampling
landscapes. One purpose of sampling landscapes is simply to tally the resources
represented within the study area—a naive inventory of how much there is and
where it occurs. Repeated over time, an inventory becomes a moniftoring program;
and because initial decisions about the inventory design are carried forward in time,
it is important to get it right the first time. Often, a simple inventory design (i.e., to
cover the study area) is elaborated to provide more nuanced information on the
distribution of a resource. For example, if the target resource is a focal species, we
might naturally target locations where we have some reason to believe the species
might occur.

Beyond this, we might also want to know whether the places it occurs reflect
habitat area or isolation effects often expected of landscapes: Is the species restricted
to very large patches? Do patches of appropriate habitat isolated from other source
patches tend to be unoccupied? This intuitive logical progression from a simple
inventory to a targeted survey to a test of hypotheses about area or isolation effects
invites questions about how to collect the samples and whether these different
purposes also imply qualitatively different sampling designs for collecting data.

Posing these questions broaches the issue of inferential design—whether the data
will support valid statistical inferences about the effects of interest. As statistical
methods are extended to studies in landscape ecology, sampling design becomes
increasingly important because sampling design tends to be coupled directly to
inferential design.

Importantly, inferential designs for landscapes tend to adopt one of two rather
exclusive approaches: to explicitly attend spatial structure in the data or to censor
that spatial information in order to use conventional parametric statistics (which
assume independence of the observations, i.e., that there is no spatial autocorrela-
tion; Legendre 1993). Designs that attend spatial structure in the data—especially at
multiple scales—present a particular challenge but also an opportunity in landscape-
scale applications. Because this can be crucial to spatial inference from ecological
data, it will be appropriate to consider issues of sample design as these support
landscape-scale analyses.

In this chapter,' we begin with an overview of the basic elements of sampling
design, such as might be invoked for a simple inventory. We then elaborate the
inventory to attend to additional factors of interest, and the sampling designs evolve
to become the geographic translation of an inferential model (e.g., an analysis-of-
variance model represented in a geographic information system). These model-
guided designs can become rather complicated and so often invite follow-up surveys
and broach issues of multiphase sampling and other adaptive approaches.

Data collected from landscapes, whether from a simple inventory or a more
elaborate inferential design, will then provide the basis for several subsequent
tasks. These include inventory itself (collecting data is only the first part), hypothesis

'Some of the material in this chapter is reworked and updated from Urban (2002).
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testing (i.e., evaluating the data according to an inferential model), site prioritization
(ranking the best sites for conservation or, the worst, for restoration), and monitoring
(trend detection) or forecasting landscape change. We will pick up these tasks in
subsequent chapters.

1.2 Elements of Sampling Design

A sample is a set of sample units collected within a sampling frame (within the study
area). A sampling design is defined by three components:

The sample unit Sample units are defined by their size (how big?) and shape
(circles or squares or rectangles?), orientation with respect to environmental gradi-
ents (across or along hillslopes?), and so on. The particulars of sample units define
the amount of variability within each sample as compared to variability among all
samples, which can contribute to inferential power. In general, variability depends
on quadrat size: smaller sample units will tend to have lower within-sample vari-
ability and higher among-sample variability (see chapter 3 in McCune and Grace
2002).

While the choice of sample units can be an important issue, for our purposes it
will be assumed that this decision has already been made judiciously. Indeed,
decades of trial and error have established best practices for many cases (e.g., for
trees, herbaceous plants, birds, etc.), and these norms are typically obvious from
even a casual review of recent applications reported in the literature.

Sample arrangement Arrangement refers to the location and spacing of samples
relative to each other and across the study area. There are only a few basic
approaches to sample arrangement (e.g., random, uniform), but a potentially infinite
number of variations on these basic designs (see below).

Sample intensity With any design, one might also vary sample intensity or the
number of samples located within the study area. In many cases, sample intensity
and arrangement will be coupled for logistical reasons, so that decisions about
arrangement imply decisions about intensity.

Repeat or aggregate samples For many targets, sampling might include repeat
visits to the same site. For example, in bird surveys, it is common to census the same
site multiple times to increase the likelihood that all birds are discovered. Similar
concerns arise for other mobile or cryptic species. These multiple visits are then
aggregated into a single observation for each point (i.e., they are not processed as
time-varying); e.g., a birder might tally the maximum number of birds observed per
species over several visits. When the repeat visits themselves are of interest, the
design is more about monitoring than sampling (see below).

In general—but not always—sampling efficacy (the ability to capture information
accurately) increases with sample intensity. At the same time, sampling efficiency
decreases with sample intensity because of the cost of collecting the data. The
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challenge is to somehow balance the spatial arrangement and density of samples to
best capture the necessary information with a reasonable number of samples. This is
especially crucial for large landscapes, where data collection often is limited by
available time and resources.

Sampling Design and Geospatial Data

As an aside, it might be noted that many data sets over landscapes are now collected
using remote-sensing technologies. Satellite imagery might seem to make decisions
about sample arrangement and intensity moot: why not simply measure everywhere?
But such data sets can be awkwardly large and difficult to process in their entirety,
and so we often sample these continuous coverages anyway, for processing effi-
ciency. And so sampling design is still important.

Remotely sensed data also introduce the issue of information content or thematic
resolution: what exactly is being measured? Compared to field measurements,
remotely sensed data are often comparatively limited in their information content
(consider a classified land cover map as compared to vegetation details we would
measure in the field). As always, there are trade-offs between resolution and spatial
extent. We will return to these issues of sample grain and resolution in the following
chapter, when we consider data used to model species distributions.

1.2.1 Basic Sample Arrangements

Most sampling designs are variations on a few simple arrangements, and it will be
convenient to begin by focusing on the basic building blocks. We will then extend
these to more complicated arrangements for particular applications. As we proceed
from simple inventories to more elaborate sampling designs intended to test hypoth-
eses about factors such as habitat isolation or disturbance, sampling designs will
reflect elements of inferential design as well: stratification, blocking and replication,
and so on. We will introduce these elements later as needed.

Uniform Samples

Uniform samples are arranged in a regular pattern (transect or grid) over the study
area (Fig. 1.1a). This design offers the advantage of being straightforward and
efficient in the field. A second advantage is that the design can be tailored explicitly
to cover the entire study area, missing no region. Sample intensity (number of
samples) depends directly on the resolution of the sampling grid: a high-resolution
grid implies a lot of samples (and higher cost), while if only a small number of
samples is affordable, then the samples unavoidably will be farther apart.

In spatial applications, uniform samples have some disadvantages. For example,
in geostatistical applications, analyses are based on the distances between samples,
and a uniform design provides a finite number of between-sample distances (e.g., for
aunit grid, distances of 1, \/2, 2, and so on). Further, the sampling interval specifies a
minimum grain in the data that the sampling can capture; if the spatial structure of
the data is not known in advance, this design limits the possible structures that can be
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Fig. 1.1 Examples of simple sampling designs: (a) uniform (100 points), (b) random (100 points),
and (c) stratified (96 points allocated equally to six land cover types)

observed. For periodic data structures, inappropriate sample intervals out-of-phase
with the data will actually produce a false periodic structure (called aliasing).

In the field, uniform samples are often collected by locating samples at equal
intervals along transects that are themselves equally spaced. This is an efficient
method equivalent to locating samples on a grid: equivalent, because each sample
can be considered the lower-left corner of a grid cell; efficient, because one requires
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only a long tape and a compass (or, more recently, a global positioning system, GPS,
or a smartphone) to locate the sampling points in the field.

Random Samples

The most common approach to sampling, random samples is simply that: samples
are located at random (X,Y) coordinates (Fig. 1.1b). For dense samples, random
sampling generally covers the study area adequately (as well as uniform samples
would), but for very sparse designs, there might be, purely by chance, “holes” in the
study area that are missed. For spatial analyses, random samples typically provide a
full range of between-point distances, and such samples are very unlikely to alias a
periodic data structure. Random samples are also appealing from a statistical per-
spective because measurements are unbiased by before-the-fact assignments of
sampling locations (i.e., the measurements are random samples of the population),
thus satisfying one of the most basic of statistical assumptions for population-level
inference. Note, however, that random locations do not mean that the measurements
will not be autocorrelated; if they are, the samples will not be independent even if
random (and see below).

In the field, random samples often are located in terms of distance and direction
from easily locatable reference points. The sample points are typically chosen as (X,
Y) coordinates and transferred to a map that can be carried into the field. If one takes
the time in advance to chart a course through all sample points, random sampling can
be made a bit more efficient (this is an orienteering exercise: e.g., point A is 37 m
bearing 240° from the road intersection; from point A, go 79 m at 48° to point B;
from there, 131 m at 335° to point C; and so on). Recent advances in the precision of
GPS units (including smartphones) make this a much simpler exercise in the field.

Stratified Designs

A combination of a stratified uniform and random, a spatially stratified random
design often provides a useful compromise between field efficiency and thorough
coverage of the study area. A full range of between-sample distances is assured by
the randomness, and the stratification assures full coverage.

In the field, a stratified random design is reasonably straightforward. One
approach entails establishing the uniform baseline (a single or a series of transects)
or grid and then locating samples at a random distance and direction from reference
positions. For example, one might locate a sample at a random distance and direction
from a series of reference nodes regularly spaced along a transect line, with the
reference points georeferenced using GPS and the random points offset in the field
from the reference points (and then GPS’d themselves).

Another common approach is a nonaligned block design, in which a sample is
located randomly within each cell of a regular grid; a sparser design might sample
only a subset of the cells. Nested nonaligned block designs are an efficient means of
stratifying samples across a range of spatial scales (and see below).

These designs are a stratification over geographic space and so depend on an
underlying grid of spatial regions (grid cells or polygons). This invites the more
general case of stratification, in which samples are allocated over any partitioning of
the study area. A common example would be to stratify samples randomly over a



1.2 Elements of Sampling Design 7

.

-—---o>
S-mmm--o>

oy
-

Fig. 1.2 Two approaches to a multi-scale sampling design: nonaligned blocks (left) and clusters
stratified along transects (right)

map of land cover or habitat types, so that each was represented equally in the
sample (Fig. 1.1c). We will rely on such logical stratifications to design sampling
schemes to target specific kinds of sites to assess research questions in a subsequent
section (Sect. 1.3.2).

Hybrid Designs

An almost infinite variety of hybrid designs can be customized from these basic
building blocks. These are typically tailored specifically to the demands of a
particular study. Common approaches include nested designs and cluster samples
(Fig. 1.2).

Nested designs

This design subsamples a study area with similar designs at different scales, with the
scales often differing by an order of magnitude. For example, one might use a nested
nonaligned block design of 100x100-m grid cells, choosing grid cells randomly at
some proportion (say, 25%). For this subset of the cells, one might then divide each
large cell into 100 10x10-m cells and resample the smaller cells with their own
nonaligned block design, and so on. At larger scales, this basic motif might be
replicated spatially within a larger grid.

Cluster sampling This is a multi-scale design in which constellations of sample
points are located at each point of a larger design. For example, the US Forest
Service inventories forests nationwide with a design of fine-scale uniform constel-
lations which are themselves located on a large-scale uniform grid. Of course, one
could also use random clusters at random reference points, or uniform clusters at
stratified-random points. The clustering provides measurements over a much wider
range of between-sample distances than single-level sampling. In particular, clusters
and nested designs provide measurements at the ‘“close” distances often
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undersampled by regular or stratified samples. The challenge in any two-level
sampling design is to devise a means of streamlining the process of locating samples
in the field. In Fig. 1.2, the nested nonaligned blocks require that the underlying grid
be delineated in the field (e.g., with stakes or flags). The transect-based equivalent
requires only a long tape and a compass. Again, the increasing availability of high-
precision GPS units can streamline the plot-location process considerably. For
example, a complicated design can be generated in a GIS and then downloaded to
a smartphone to use in the field.

It should be obvious that by choosing the spacing along a transect (or grid cell
size) in addition to the number and spacing of points located at each stratification
point (from points along a transect or within a grid cell) that there is an infinite
variety of sample layouts available from these very basic building blocks. Some of
these will be especially amenable to different kinds of landscape-scale studies, and
so it will be appropriate to consider some of these applications.

1.3 Sampling Designs for Applications

Here we develop, as a heuristic exercise, a logical evolution of sampling designs,
from the simplest goal of covering a study area to much more complicated designs,
informed by models, that aim to provide maximum information in as few samples as
possible. Along the way, we will need to digress to consider the special case of
capturing information at particular spatial scales.

1.3.1 Inventory

Inventories can be quite simple, or they can be targeted at a specific resource or focal
species. The latter is a straightforward extension of the former.

Simple Inventory In what we might term a naive inventory, we simply wish to
know what resources are represented in or supported by the study area. How many
bird species breed in the study area? How abundant are they, and are there unusual
species from particular habitat types, or foraging guilds, or what? This is the
sampling approach we might adopt as an initial inventory of a study area, to establish
an ecological baseline.

Because the goal is complete coverage of the study area, any sampling design can
provide useful data: uniform, random, or spatially stratified random samples. Here
the likely trade-off will be sampling intensity (number of samples) as compared to
how thoroughly the study area can be covered. Random samples will suffice unless
the number of samples is so low that some areas are missed by chance; uniform
samples will control coverage as long as the between-sample distances are not too
large; and stratified-random samples offer a convenient compromise.
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An inventory repeated over time is a monitoring program. Because subsequent
measurements will be collected according to the initial design (and carry forward any
mistakes!), it is important to get it right the first time.

Focused or Constrained Inventory Often we will have some idea or expectations
about inventory, and it will be efficient to tailor an inventory to reflect this prior
information. For example, we might be interested in a particular species—a rare
plant, a charismatic wildlife species, or a species of economic concern for commod-
ity or recreational value. In such cases, the inventory is not naive but rather tempered
by some prior expectations or constraints on its distribution. We might, for example,
know that the species occurs only in certain cover types (e.g., evergreen forest), or
we might have a statistical model of habitat suitability for the species mapped into a
geographic information system (see Chap. 2). In this case, it would make sense to
bias the inventory relative to predicted habitat suitability. In this, we might bin
habitat suitability into a few classes (“very good,” “suitable,” and “marginal” habitat
and perhaps “not habitat” just to be cautious—and see below) and stratify samples
over these classes to get an idea of relative species density in habitats of varying
suitability.

It is worth emphasizing here that an inventory of the expected abundance of the
focal species can be estimated directly from this habitat-stratified sample: The
expected number of individuals of the species is the density (numbers per unit
area) of the species in each level of habitat suitability, multiplied by the area of
each suitability class in the entire study area—a simple weighted summation:

KI:ZD,--Ai (1.1)

i=1

where D is density and A is area for each of the k cover types or habitat classes. Here,
careful stratification of the sampling makes the actual inventory quite straightfor-
ward and efficient.

It is important to note that stratifying samples randomly over levels of habitat
suitability is exactly analogous to stratifying samples over geographic space. The
only difference is in how we define the strata: in parameter space (habitat suitability)
in one case or in geographic space in the other. This flexibility to define strata for
particular applications will generate substantial inferential leverage for landscape-
scale sampling designs. And the key to this will be the facility with which we can
translate between parameter space (in concept) and geographic space (on the
ground). Typically, we will define strata in parameter space and then use a GIS to
translate these in geographic space. McGarigal and Cushman (2002) refer to this as
GIS-based filtering. The simple inventory implied by Eq. 1.1 can be extended
accordingly.

The example of stratifying an inventory over levels of presumed habitat suitabil-
ity also illustrates another important consideration in sampling designs: the potential
for bias. We can probe this example for some insight into the issue. We already noted
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that a strict case/control sampling design for a focal species might not yield very
many presences. An intuitive alternative would be to target settings where we expect
the focal species to occur (e.g., in particular, forest types as represented in a land
cover map). This approach would certainly garner more presence points... but it
would also be a self-fulfilling prophecy about what constitutes “habitat”: we would
only observe the species in places that we already thought looked like “habitat.” To
prevent this bias, we would want to also sample in locations that we think do not
look like habitat, just to be sure. At this point, the sampling design slips away from
inventory and becomes more inferential, designed to test a hypothesis.

1.3.2 Inventory Extended to Explore Hypotheses

As Austin (2002, 2007) has discussed, we have some specific expectations of species
distributional patterns at the landscape scale. From metapopulation theory (Pulliam
1988; Urban 2023, Chapter 6), we expect that a good habitat that is isolated from
other habitat patches might be unoccupied. Reciprocally, marginal habitat that is
near occupied good habitat might also be occupied because of local dispersal
subsidies. That is, while we expect to encounter more individuals of the focal species
in patches of “habitat,” we also have perfectly valid expectations about the lack of
occurrence in habitat and occurrences in marginal or poor habitat. Likewise, we
might have expectations about species response to patch size or geometry (e.g.,
Burgess and Sharpe 1981). It would be perfectly logical to sample in such a way that
we could explore these effects along with the “habitat” effect itself.

This extension requires only that we define new sampling strata in terms of
relative isolation from or adjacency to other patches of suitable habitat. For example,
if we could compute (in a GIS) the distance from every patch of suitable habitat to
every other patch of suitable habitat, we could then partition these distances into
discrete ranges (bins) and stratify over the bins as well as over habitat suitability.
From the field inventory, our expectation would be that “near” habitats would be
occupied disproportionately (and perhaps even for marginal or unsuitable habitat),
while suitable “habitat” far from a source might well be less frequently unoccupied.
This is another stratification in the sampling design, to now consider “habitat
suitability” and “distance” (or “isolation) as two main factors influencing species
distribution. This logic could be extended to consider patch area or geometry (e.g.,
percent edge) as another factor influencing occupancy. Importantly, this stratification
is no more complicated in principle than stratifying over geographic space or any
other variable. It is a straightforward exercise to query a geographic information
system (GIS) to find locations that meet the desired conditions for the stratification.
(Note that this task, of distinguishing habitat effects from geometry or isolation, can
be hugely complicated in application: Urban (2023) reviewed decades of effort on
this topic, much of this led by Lenore Fahrig—see Fahrig 2003, 2017, 2018, 2019).
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Fig. 1.3 A decision tree to isolate the effects of habitat suitability, dispersal, and disturbance (here,
as proximity to roads) on species distribution (after Urban 2002). The tree has eight branches, and
locations representing each case can be isolated using simple GIS queries. Note that only two end
nodes are reasonably unambiguous: node 2 (numbered from left to right) should be unoccupied and
node 7, occupied. Note also that only a comparison of samples representing nodes 7 versus 8 would
support a clear inference about disturbance

Stratify to populate an ANOVA model Specifically addressing habitat suitability
and distance (or isolation) is a straightforward extension to a stratified random design
in space. This invites more nuanced stratifications and designs aimed to explore
various multivariate hypotheses about species distribution. But these designs can be
focused even more, depending on the aims of the application.

Consider, for example, a study in which we are interested in habitat suitability,
distance effects (isolation or dispersal subsidy), and disturbance as constraints on a
focal species. Further, consider the simple binary case wherein we assign each
variable into two levels: suitable habitat or not, isolated or not, and disturbed or
not. This is an analysis-of-variance (ANOVA) design, whereby we will want to
explain the occupancy of various patches in terms of their suitability, isolation, and
disturbance. There are 2* or eight combinations of factors in the fully crossed design
(Fig. 1.3). To populate this inferential design, we would need to locate some
replicate samples of each of the eight cases within our study area. This can be
done via a series of queries to the GIS data by highlighting a series of intersections of
the combinations of values.

The tree model helps underscore the relative value of information collected to
address particular questions. In this illustration, only two of the eight end nodes
(leaves) of the tree are straightforward: node 2 is unsuitable habitat, isolated, and
disturbed, and we would not expect the focal species to be there; node 7 is suitable
habitat, not isolated, and undisturbed, and we would expect the species to be found
under those conditions. The other six cases are interesting precisely because they are
ambiguous.

To partition the effects of all three factors, we need samples representing all eight
of the nodes: a fully balanced ANOVA design that will allow us to estimate the
relative importance of each effect (and perhaps interactions as well). Indeed, to do
the ANOVA, we would need the same number of samples in each bin. By contrast, if
we are primarily interested in disturbance effects, then the only cases that provide
this leverage is a comparison of nodes 7 and 8: all other nodes are confounded by
uncertainties due to habitat suitability or isolation.
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solutions

Fig. 1.4 A hypothetical sampling example, focusing on a riparian plant (black dots in maps) that
might be dispersal limited (occurring in only a few watersheds) and is subject to disturbance by
hikers (near trails, brown lines in the maps). (a) Background on the left is topographic convergence,
emphasizing the riparian habitat in blue and violet. (b) Potential solution space emphasizes that only
three locations can provide inferential leverage in this case: green buffers delineate “riparian
habitat” in occupied watersheds; brown buffers, “near trails”; catchments with known occurrences
(black dots) offer evidence of dispersal access. Potential sampling sites must be in green buffers, in
occupied catchments, and allow for paired sites that can be located in disturbed versus undisturbed
locations in reasonable proximity

A slightly more tangible illustration of this logic also allows us to add elements of
inferential design to the discussion. The illustration is based on a (fictional) rare plant
that occurs in riparian habitats, might be dispersal limited, and is known to be
decimated by hikers who pick the flowers (Fig. 1.4, after Urban 2002). In geographic
space, the sampling challenge is to find locations that can provide inferential
leverage on the importance of disturbance by hikers. To do this, we must find
locations that are suitable habitat and apparently not isolated (in this case, by finding
small watersheds where the species is known to occur). Then, we must contrast
disturbed (i.e., near trails) and undisturbed (far from trails) locations for paired
sampling. The solution set underscores the reality that most locations in the study
area actually are not very informative about the question at hand.
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Fig. 1.5 Schematic contrast of an ANOVA design in which dependent variable Y is modeled in
terms of a categorical predictor X (with 2 levels, on the left) as compared to a regression design in
which X is a continuous predictor (on right). The regression design can suggest not only whether the
response differs but how it varies with X

Inferential Design on Landscapes

The basic elements of inferential design include blocking, randomization, and
replication. Blocking is an attempt to control the “all else being equal” clause that
qualifies our attempts at generalization. In this case, blocking entails localizing the
contrast of interest (in Fig. 1.4, disturbed or not) in the same general location so that
other potentially confounding variables such as soil factors can be controlled by
holding them as constant as possible (this makes some assumptions, of course, about
the spatial structure of these variables—see below).

Typically, randomization is the assignment of treatment versus control cases
randomly within blocks. The aim is to hedge bets that the blocking actually did
control all unaccounted covariates and also to ensure (as much as possible) that the
sample cases are independent of each other. In this case, randomization also would
entail locating the actual sampling locations stochastically within the focal water-
sheds (but near streams and either near or far from trails).

Finally, the experimental contrast of “disturbed versus not” needs to be replicated
over multiple instances of the same contrast, in multiple watersheds. Replication
increases the precision with which the effect can be estimated. If the contrast due to
disturbance is similar across all watersheds, we would have more confidence in the
result and a greater ability to estimate the “disturbance effect”. Reciprocally, if each
watershed behaves idiosyncratically, we would see a “watershed” effect dominating
the results and the “disturbance” effect would be lost. (In the statistical model, a
“watershed ID” variable would serve as a dummy variable for any unmeasured
covariates that vary among occupied watersheds.)

ANOVA Versus Regression Designs These examples have focused on an
ANOVA design in which the explanatory variables are categorical factors (e.g.,
“near stream” or “not”). In the ANOVA case, the fully stratified design balances the
ANOVA so that each of the effects can be estimated. It is perfectly easy to generalize
this to a regression design in which the explanatory variables are continuous
(interval scale). Analytically, the two are essentially the same: the #-test that assesses
the differences between means for two groups is the same as the test of the regression
slope on that variable used as a continuous predictor (Fig. 1.5). In the regression
case, the stratification ensures that the full range of variability on each factor is
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sampled efficiently; by contrast, random sampling would load more samples into the
middle of the distribution (assuming normality) and under-sample the tails of the
distribution.

The regression design offers two advantages in applications. First, while it might
be conceptually appealing to use categorical contrasts in an ANOVA design, it is
often difficult to do this cleanly except in simple manipulative experiments (i.e.,
“treatment” or “control”). In other cases, such as “disturbed” or “not,” “near” or
“far,” and “large” and ““small,” it can be difficult to find unambiguous realizations of
the desired contrast: what we end up with are samples with measurements over a
range of values, which we arbitrarily bin into categories. Our inability to find
replicates of exactly the same value (disturbance state, distance, size) introduces
noise into the analysis in the form of within-group (replicate) variability. At the same
time, the arbitrary grouping into categories implies that we know in advance how to
partition a continuous variable into ecologically relevant categories: if the variable of
interest is “patch size,” we must assume we know what defines a “large” as
compared to a “small” patch—from the perspective of the dependent variable
(e.g., occurrence of a focal species). It seems presumptuous to assume that we
would know this in advance in many cases.

Second, an ANOVA model can tell us only whether the response differs across
levels of the categorical factor and which levels correspond to higher or lower
response values. A regression design provides the same information, as well as
offering the ability to describe the shape of the response: is it linear, nonlinear, a
threshold response, or what? Thus, regression models are often simpler to implement
in the field, and they can return more nuanced information. It seems logical to use the
regression design more often in ecological field studies. Importantly, one can have
the best of both worlds: use a GIS to stratify samples within discrete levels of values
on an explanatory variable of interest (e.g., “small,” “medium,” and “large” patches)
and then use a regression design for the actual analysis, in which the distinctions
among categorical levels are erased. This is analogous to the approach modelers use
in sampling over complicated parameter distributions in various Latin or orthogonal
hypercube sampling designs (e.g., Iman et al. 1981); but it is equally compelling for
logistically complicated field studies at the landscape scale.

1.3.3 Hpypotheses that Explicitly Embrace Space

It should be obvious that stratifying over an explanatory variable such as “isolation”
is completely analogous to stratifying over locations specified in terms of (X.Y)
locations: the aim, in both instances, is to cover the range of values available in the
study area. In analysis, this is a regression problem. But it is confounded by the
reality that the samples are drawn from spatial locations—explicitly, in geographi-
cally stratified designs and, implicitly, in cases where the stratification is over an
explanatory variable that is not obviously spatial but yet is spatially structured for
ecological reasons (e.g., because of local topography; Urban 2023, Chapter 4). This
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will invite us (or perhaps require us) to distinguish logically between explicit spatial
effects and implicit effects due to spatial structure in data.

Before delving into spatial effects, we should digress briefly to be clear about
what “spatial” might mean in terms of sampling. First, we might measure variables
such as “distance to” some feature (e.g., water, roads). These are implicitly spatial
variables that can only occur with reference to particular locations; we would
interpret these statistically in terms of local trends (e.g., an increase in the likelihood
of species occurrence with decreasing distance to water).

We might also measure the location itself, as latitude/longitude or other (X,Y)
coordinates. These are explicitly spatial variables, and we would interpret them in
terms of geographic trends (e.g., a relationship between temperature and latitude). In
this instance, samples that are farther north are different than samples farther south.

In this discussion, we will be especially interested in spatial effects that depend on
the distances between samples: we will want to interpret patterns such as the
tendency for measurements to be more similar for samples that are closer together.
That is, the interpretation will be in terms of “distance apart.” By contrast to the
geographic trend considered above, this pattern of autocorrelation might be true no
matter where in the study area the samples occur; the spatial structure is localized but
replicated broadly over the study area.

Spatial autocorrelation arises from environmental dependencies such as topo-
graphic influences on ecological variables that affect species, spatially contagious
disturbances or stressors (fire, pests, disease), or spatial processes (especially dis-
persal) (Legendre 1993; Chapter 4 in Urban 2023; and see Chap. 6).

Spatial structure, as autocorrelation in the data, will confound the inferential
design of many studies, in that spatial structure will violate the assumption of
independence among samples that randomization seeks to provide. That is, if the
data are spatially structured, randomization does not ensure that the samples are
mutually independent (Legendre 1993). In such cases, a key assumption of para-
metric statistical analysis (i.e., that samples are independent) cannot be met.

There are two and only two responses to this problem. One is to embrace space
explicitly and adopt analytic methods that account for spatial structure in the data—
in sampling and in analysis. The alternative is to detect and quantify the spatial
structure in the data and then sample in the study area in a way that ensures that the
samples are indeed independent—that is, to embrace space in sampling so that space
can be ignored or avoided in analysis. Either way, one must characterize the spatial
structure in the data before proceeding.

A key element in this approach is to know the spatial resolution of the structure of
the data. That is, if we want to sample over a range of values of some explanatory
variable, we will need to know how that variable varies geographically: how it is
scaled.

Spatial Grain and Sample Independence

The spatial resolution of variability in a variable—its grain—is defined by the
distances over which it varies in a spatially dependent manner, the scale of its spatial
autocorrelation. We would anticipate that measurements of a variable collected very
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close together will be similar, while measurements separated by some distance will
tend to be less similar or more dissimilar. The are two general methods for describing
this distance-dependency in the data. One focuses on the similarity of measurements
as a function of distance apart, while the other approach focuses on dissimilarity
(Urban 2023, Chapter 4, §4.3.1; and see Chap. 6).

Autocorrelation Spatial statisticians focus on autocorrelation in measured vari-
ables, the tendency of measurements to be similar when collected at locations that
are close together. A common estimate takes the form:

W 2D WiZiz
I(d)= —— (1.2)

i
G

which is the estimator for Moran’s I (Moran 1950; Legendre 1993). Here, the
measurements are converted into z scores (deviation from the mean, divided by
the standard deviation) to rescale the measurements. The w term is an indicator
variable that takes on a value of 1 if two samples are within some specified range of
distances apart (i.e., in distance class d), else it takes on a value of 0. Through this
indexing, the formula provides an estimate of autocorrelation for each distance class
d. The term W is the sum of the indicator weights (sample size) in each distance class,
which along with the overall sample size n rescales the index to vary on the range
[—1,1], just like the familiar Pearson correlation coefficient.
The expected value of Moran’s [ is:

E(I)= (1.3)

which, for large sample sizes, approaches O (as with a familiar correlation coeffi-
cient). A plot of Moran’s I versus separation distance (i.e., for each discrete distance
class d) yields a correlogram. A correlogram summarizes direction (positive
or negative), intensity of the pattern (absolute value of autocorrelation), and the
scale(s) (i.e., distance classes) at which this pattern is expressed.

A correlogram for ecological variables typically shows positive autocorrelation,
meaning that samples that are close together tend to take on similar values. Negative
autocorrelation, in which nearby samples have dissimilar values, is rare in natural
systems. Typically, autocorrelation decreases with increasing distance apart until the
index does not differ statistically from O (no autocorrelation, which means the
samples are independent). This test can be approximated based on a large-sample
normalization, or (more typically) the confidence limits around O can be estimated
via a randomization procedure.

As a scaling technique, autocorrelation identifies pattern as distance classes
within which samples tend to be similar. Legendre and Fortin (1989) provide
heuristic examples of correlograms for a variety of visually distinctive patterns.
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Semivariance Somewhat separately from spatial statistics, the field of geostatistics
(mostly at home in engineering) developed an approach to index scaling in terms of
the dissimilarity of measurements as a function of separation distance. Translating
from the somewhat disparate notation of geostatistics into a format consistent with
autocorrelation (Eq. 1.2), semivariance (gamma) is estimated:

v(d) = ﬁzzw()@ —x) (1.4)

where the indicator variable w acts as in Moran’s I to subset sample pairs by distance
class and W is the number of sample pairs in distance class d. Dividing by two
rescales the index so that it converges on simple variance as autocorrelation
decreases to 0.0 (i.e., as among-sample variability approaches independence).

A semivariogram (or simply, variogram) plots dissimilarity as a function of
separation distance (Fig. 1.6). A variogram is described in terms of three attributes.
The curve tends to asymptote to a plateau value, which is its sill (units:
semivariance). The distance at which this occurs is the range of the variogram,
which here is the item of interest because it indicates the scale of spatial dependency.
The Y-intercept of the curve is its nugget variance. In a perfect world, the nugget
would be 0, indicating that samples measured in the same location would have
identical values. For most ecological measurements, this is not the case and so the
nugget suggests the natural replicate variability of the measurement. But the
nugget also is affected by other factors. In particular, because the variogram plots
average semivariance within a distance class against the average separation distance
for pairs of samples within that class, the nugget probably does not actually intercept
the Y-axis but instead occurs at some distance from O—the average minimum
distance between the samples. This means that we have no information about
variability in measurements at a grain finer than this distance. This contributes to
the effective grain of the data set, because the spacing of samples influences the
minimum spatial resolution.

From a sampling perspective, the grain of a variable suggests the distances over
which measurements should be distributed to either capture the local dependence or
conversely, to avoid this. To begin with the latter case: To ensure independence of
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Fig. 1.7 Two sampling designs with 200 random points: (a) simply random and (b) a sequential
interference design with an exclusion distance of 5

observations in a sampling design, samples should be located randomly and no
closer together than the grain of that variable. This can be done using a sequential
interference sampling design. In the simplest version of this, an initial point is
chosen randomly. Then, a second point is chosen randomly and its location is
compared to that of the first point; if farther than a user-specified distance (the
exclusion distance), the point is retained; otherwise, the point is discarded and
another random point is selected. Then, a third point is selected and compared to
the locations of the first two points, and so on. This sequential process results in a set
of random points, none of which is closer together than the exclusion distance
(Fig. 1.7). This sample would then meet the assumption of independence that is
required of parametric analyses.

Of course, this procedure would need to be conducted relative to the minimum
grain over all variables of interest (or perhaps the most limiting). Most GIS packages
include tools for generating random points with a user-specified exclusion distance
in this way.

Explicitly Spatial Models

The alternative to sampling to avoid spatial autocorrelation is to sample to explicitly
capture this spatial structure, perhaps over multiple scales. This means that samples
must be collected at separation distances that correspond to the natural scaling of
each of the variables of interest. In principle, a random or stratified random sampling
design will accomplish this—if the sampling is sufficiently intense. In practice, it is
often more efficient to use a multi-scaled design (e.g., Fig. 1.2) with spatial structures
corresponding to the variables of interest. This approach ensures an adequate
representation of “close” distances even for sparse sampling designs.

We will consider the statistical tools for spatially explicit inference later
(Chap. 6). But it should be sufficient for now to emphasize that we will be unable
to make spatial inferences if we collect data that are not spatially structured over the
scales of interest. Note that in the special case in which we wish to document the
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Fig. 1.8 Stratification over
elevation (brown gradient)
and microtopography, in
which several topographic
positions (colored dots) are
sampled locally within each
elevation band

effect of the spatial structure in one variable relative to that in a second variable—
ie., to estimate a spatial dependence—we will want to sample the variables at
separation distances over which the measurements show dependence. That is, we
want to sample over the “steep” part of their correlogram or variogram.

Partial Regression Designs in Geographic Space

In many cases, the spatial structure of the variable is explicitly of interest. In one
case, the aim is to stratify over this variable while nesting this stratification within a
(larger-scale) stratification over another variable. For example, elevation and local
topographic convergence both affect soil moisture in montane systems, but at very
different spatial scales: elevation varies over many hundreds of meters while
microtopography varies over tens of meters (Urban et al. 2000). To isolate the
effects of each of these variables on plant distribution, the sampling design must
nest microtopography within elevation, capturing a range of topographic positions at
multiple elevations. Analytically, the aim is to be able to describe the importance of
microtopography as a partial regression problem: at any given -elevation,
microtopography exerts an additional (local) effect. To isolate this possible effect,
we will require samples that capture relative higher (drier) and lower (wetter)
topographic positions across a range of elevations.

This sampling challenge requires a multi-scaled sampling design. In this instance,
the aim is to stratify samples over distances (scales) that capture the variability in
elevation while also nesting within this pattern a subset of samples that capture the
variability in topographic position. This, in turn, implies a clustered or randomized
block design that explicitly varies on the two scales of elevation and
microtopography (Fig. 1.8, and see Urban 2023, Chapter 4). One way to achieve
this in the field is to first stratify over elevation (e.g., with sampling locations spaced
to capture the range of variation in elevation) and then to nest clusters of samples at
each of these locations, with the clusters structured to capture the local variability in
microtopography (as depicted generically in Fig. 1.2).

Again, to emphasize the simpler case of independent samples, we would want the
local cluster of points aimed at microtopography to be separated by distances at least
as far as the range of autocorrelation. In that way, each microtopography sample
would tend to be independent.
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Spatial Structure and Virtual Pilot Studies

It might be obvious by now that spatial structure in landscape-scale data will be of
interest in every case: when we wish to embrace the spatial structure with explicitly
spatial statistical models, when we want to partition the effects of multiple variables
structured at a variety of scales, or when we wish to avoid the complexities of
autocorrelation so that we can use simpler parametric statistics that assume inde-
pendence. That is, we need to be explicit about scale whether we want to attend it
deliberately or not.

This implies that, absent this information in advance, we will need to do pilot
studies to discover the natural scaling of ecological variables of interest. Pilot field
studies can be as costly as the actual sampling, and so any alternatives that increase
efficiency would be welcome. One approach is to use “virtual” pilot studies to
explore the spatial scaling of the study system and to assess alternative sampling
designs. In a virtual pilot study, geospatial biophysical proxies (Urban 2023,
Chapter 1) are used to represent ecological variables of interest. For example, we
might use various terrain-based indices of soil moisture, or proxies for radiation
loading, and so on. It is straightforward to generate and then sample these in a
geographic information system, to discover their natural scaling as well as to explore
alternative sample arrangements and to capture this structure (Urban 2002). This
information can then be used to inform the actual field samples (Urban et al. 2000,
2002).

1.3.4 Heuristic Sampling

One of the challenges of working empirically at the landscape scale is that the data
tend to be sparse relative to the extent of the study area. This implies that inferences
based on these data, while perhaps statistically significant in the conventional sense,
might be a bit uncertain. One way to respond to this uncertainty is to use the model to
help guide follow-up sampling, to collect new data that will best resolve uncer-
tainties arising from the initial sampling and analysis. We might term this heuristic
sampling, in the sense that the sampling design can “learn” from its earlier instances
to inform subsequent efforts. That is, an initial sample helps build a model, and the
model helps to inform a follow-up sampling design—data from which samples
might efficiently improve the model.

For example, Urban et al. (2002) used a field survey to explore the environmental
associations of several forest community types in the Sierra Nevada of southern
California, USA. They used a classification and regression tree (Chap. 2, Supple-
ment 2S.2) to do this analysis and generated a plausible tree that suggested that two
high-elevation forest types could be distinguished largely according to slope aspect.
While reasonable enough, the relatively small sample sizes suggested some uncer-
tainty in the model. They then used the model to predict locations at (unsampled)
high elevations that would contrast the model predictions at logistically convenient
locations (i.e., contrasting and nearby slopes at similar elevations). New samples at
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Fig. 1.9 A heuristic sampling approach, in which a classification tree (inset) is used to identify
sample locations that will test the model. The red and green locations on the map correspond to the
branch of the tree (right side) that contrasts western white pine (PImo, in green) and lodgepole pine
(PIco, in red) forests. (Redrawn from Urban et al. (2002) with permission of Taylor and Francis,
Ltd.; permission conveyed via Copyright Clearance Center, Inc.)
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these locations would either corroborate the initial model or provide new informa-
tion to revise and improve the model (Fig. 1.9).

The use of models to guide sampling designs can be extended to arbitrarily more
complicated cases. For example, Urban et al. (2000) developed a forest simulator to
synthesize the state of knowledge of how climate interacted with forest process and
the fire regime in mixed conifer forests of the southern Sierra Nevada (this was part
of the same project illustrated in Fig. 1.9). The simulation model provided estimates
of the sensitivity of these forests to changes in temperature and precipitation. Despite
its complexity, the model does not incorporate important processes such as lateral
hydrologic flow, a source of uncertainty in model simulations. As a guide to
establishing a monitoring program in the Park in anticipation of climate change,
the investigators summarized the sensitivity of the model system to slight variation
in temperature and precipitation, capturing this sensitivity in regressions based on
geospatial predictors (e.g., elevation, slope, aspect). Uncertainty related to topo-
graphic position was indexed in terms of the local variability (within 100 m) of a
terrain-based index of hydrologic convergence, intended to capture the ability to
measure such differences efficiently in local surveys. An initial map product iden-
tified regions of the study area that might be most sensitive to changes in temperature
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Fig. 1.10 Sampling locations targeted for monitoring in anticipation of climate change in Sequoia
National Park in the southern Sierra Nevada of California (after Urban 2000). Draped on digital
terrain, the intensity of red indicates sensitivity to temperature change, and intensity of blue
indicates sensitivity to changes in precipitation. Intensity of green indexes local variability in
topographic convergence, a source of uncertainty in the model. Colors are additive, so white (all
three colors) shows locations that are climatically sensitive and with sufficient local variation in
topography to capture these effects and resolve uncertainty. If constrained further for logistical
reasons (road or trail access), the intersection zone amounts to <2% of the study area

and precipitation, tempered by the mapped uncertainty due to local topography
(Urban 2000, Fig. 1.10).

An extension to this map added logistical considerations such as reasonable
proximity to roads and trails (access to sampling sites is expensive, in terms of
human resources and time). The final map suggested the most informative sites for
efficient monitoring for climate change. Importantly, these selected sites represented
less than 2% of the study area. This example underscores the potentially large
increases in sampling efficiency—measured in terms of information return per unit
sample—that can be achieved by using a model to guide the sampling design.

1.3.5 Multiphase Sampling and Other Iterative Approaches

Thus far, this discussion has focused on a single sampling episode or, in the case of
heuristic designs, an initial sampling campaign followed by a second campaign
informed by sensitivities or uncertainties suggested by the first. There are other
approaches to multiphase designs. One approach, motivated by the sometimes high
cost of measuring variables, uses an initial sampling during which a set of easily
measured (or inexpensive) variables are collected. A second set of samples is then
extracted from the initial set; the subset is typically selected so that they represent the
full range of variability in the initial pool but with far fewer samples. At these
samples, a larger set of (more expensive) variables is measured. These variables are
then cross-walked to the initial variables via regression. In this, the approach
leverages the high information content of the second set of samples to the initial
set, increasing the information content of the full set.
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In long-term monitoring programs, samples can degrade over time simply due to
the frequency with which the sample locations are revisited. Imagine, for example,
the long-term impacts on plant species composition of repeated episodes of tram-
pling during site visits. Such impacts are possible even when great care is taken to
minimize the impacts of field crews. Another problem arises in long-term studies if
the initial samples were not an adequate and robust sample of the target resource or if
the initial samples were adequate but the focal species disperses over time (or is
dispersed by disturbance events or other vectors extrinsic to the target populations).
In the latter case of dispersal, long-term monitoring would show a gradual decline in
the population even if it were stable (but inhabiting new locations).

A rotating panel sampling design helps avoid these problems. Borrowed from
work with surveys of human subjects where the issue is burnout by respondents, the
aim is to “refresh” the sample by adding new respondents at each iteration or the
survey. For example, in the second survey, one might reuse 80% of the initial
respondents while adding 20% new respondents. In the next survey, 80% would
again be resampled and another 20% new respondents added. In ecological appli-
cations, the implication is that most of the initial sampling locations would be
revisited while some new samples are added at each iteration. Over time, the
sampling frame (i.e., total number of locations eligible for sampling) increases in
size while a constant number of samples are surveyed at each iteration (and so
sampling costs remain constant). While not used commonly in ecology, this
approach would seem to warrant more consideration for ecological monitoring
programs.

1.4 Workflow for Sampling Design

Collecting all of this wide-ranging discussion leads us to a general workflow for
sampling designs for landscapes. The workflow has two stages (Fig. 1.11). In the
first stage, the study goals and objectives determine a set of ecological factors of
interest; these will form the basis for sample stratification. In this, each factor will be
partitioned into a few discrete levels (e.g., from low to high) and samples will be
allocated over these levels. This might also include a geographic stratification if even
coverage of the study area is desired. In a geographic information system, the levels
of all stratification variables would then be intersected, to yield discrete combina-
tions of all levels of all factors (although some combinations might be rare or absent
in the study area). The result of this intersection is a set of regions that represent the
stratification (Fig. 1.11, right end of the top tier).

In practice, it is convenient if the regions are coded deliberately for ease of
interpretation. For example, we might stratify over elevation, a geographic proxy
for radiation loading, and local topographic convergence (see Urban 2023, Chap. 1
for a discussion of such proxies). If each factor is partitioned into three levels
(low/medium/high), these can be coded 1/2/3. The factors are combined into
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Objectives Stratification
Geographic .
coverage intersect
Inventory? .
Monitoring? — Strata as regions
Research? Environmental
factors
Autocorrelation? Design
Avoid Interference
Spatial scaling ——————>
Embrace Multi-scale

Fig. 1.11 Workflow for sampling designs for landscape applications. The process occurs in two
stages. In the first stage (top tier), project goals suggest environmental variables for stratification;
this stage might also stratify across geographic space to ensure full coverage of the study area. This
stage results in the intersection of strata, as spatial regions in the study area. The second stage
(bottom tier) addresses spatial structure—specifically, whether the aim is to avoid or embrace
autocorrelation. This decision leads to either an interference or multi-scale sampling design

three-digit codes” by multiplying appropriately: 100x the elevation code +10x the
radiation code + the convergence code. Thus, a region coded “113” is low elevation,
low radiation, and high convergence (a low-elevation cove); “331” is a sunny high-
elevation ridge; and so on. Each combination is readily interpretable ecologically.

The second stage of sampling design must attend to spatial autocorrelation. This
means that the scaling of the environmental factors must be determined; this can be
done via a digital pilot study using geospatial proxies. The key decision point is
whether to avoid autocorrelation or to embrace it (Fig. 1.11, lower tier). In the former
case, the sampling design would use a sequential interference model to ensure
sample independence, by excluding samples within the range of autocorrelation
for the environmental factor(s). In the latter case, one would use a multi-scale design
to ensure that there would be samples within distances corresponding to the scale
(s) of interest.

We will return to the analytic treatment of spatial data in Chap. 6.

%In teaching, my colleagues and I refer to these coded regions as environmental zip-codes, because
they are localized but interpretable regionally.
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1.4.1 Reporting

Presentation and reporting of a sampling design follows the workflow above. In
particular, each of the decisions implied by the workflow should be justified and
explained in terms of the program’s goals:

The goals and specific objectives of the sampling program

Environmental factors that are being targeted in stratification, and why
(if proxies, what they are intended to represent)

Whether the sample units are stratified over geographic space, and how

How the strata are combined or intersected to generate sampling regions

The characteristic spatial scaling of key environmental factors (stratification
variables or target resources being sampled)

Whether the design seeks to avoid autocorrelation or embrace it explicitly

The final design: layout, number of samples, and measurement schedule (e.g.,
repeat visits, etc.)

NN

NN

These details would naturally precede any discussion of exploratory data analysis
in preparation for the application, to which we turn in Chap. 3.

1.5 Further Reading

For a more in-depth treatment of sampling designs, there are several excellent
sources available that emphasize monitoring designs for natural resources (Duncan
and Kalton 1987; Goldsmith 1991; Schreuder et al. 1993; Ringold et al. 1996; Lesser
and Kalsbeek 1997; Gitzen et al. 2012; McDiarmid et al. 2012; Loos et al. 2015).
McCune and Grace (2002, their Chapter 3) provide guidance on the implications of
various sampling decisions for the analysis of community data. Nusser et al. (1998)
present a useful illustration of the relationship between sampling design (i.e., data
collection) and experimental design (i.e., parameter estimation and inference) for
natural resource applications. Urban (2002) discusses sampling designs as applied to
landscape-scale studies characterized by fine grain and large extent (some material
presented here is largely reworked from that chapter); that overview, in turn, reflects
a large-scale research and management program described elsewhere (Urban 2000;
Urban et al. 2000, 2002). Fortin et al. (1989) provide a more general discussion of
sampling designs and their implications for autocorrelated data, especially data with
fine-grained spatial structure over large spatial extent. Dale and Fortin (2014)
include a chapter (their chapter 1) on sampling design for landscapes. Bellehumeur
and Legendre (1998) emphasize sampling designs for ecological studies concerned
with spatial patterns expressed at multiple scales. Plant (2012) provides a thorough
discussion of spatial sampling designs (his chapter 5).
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1.6 Summary and Prospectus

Sampling designs for landscape-scale applications put a premium on efficiency:
collecting maximum information while minimizing logistical costs. Applications
illustrate a progression from simple inventory to targeted inventory, to studies
designed to test ecological hypotheses explicitly. In this, sampling designs also
show a progression from simple stratifications in geographic space, to more nuanced
stratifications in a logical or parameter space, which are then mapped into geo-
graphic space through GIS-based queries. In some cases, models can be used
deliberately to generate efficient and informative sampling designs.

Spatial structure (autocorrelation) in ecological data presents a fundamental
challenge in sampling and inferential design. Two choices are available: to embrace
space or to avoid the analytic complications of autocorrelation. In either case, the
spatial structure of variables of interest must be known in advance. Virtual pilot
studies can provide this information.

In this chapter, we have considered how to collect informative data at the
landscape scale. Rather than moving directly into exploratory data analysis of such
data— as we perhaps should!—we will instead leap directly our first fundamental
task in landscape ecology: species distribution modeling. This experience will
motivate a deeper appreciation of exploratory data analysis in ecological applica-
tions more generally. We turn to those general approaches in the following chapters.

In the next few chapters, we will use landscape-scale data to build species
distribution models, make ecological inferences about landscape patterns and pro-
cesses, prioritize sites for management, detect and forecast ecological trends over
time, and, finally, build an inferential framework for integrated assessment of
landscape-scale research and management programs.
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Chapter 2 ®)
Species Distribution Modeling S

Abstract Species distribution modeling is perhaps the most fundamental task in
natural resource management and conservation practice. This task dates to the
earliest days of ecology but has undergone a rapid evolution in the past several
years, driven by new statistical techniques and the increasing availability of large-
scale species distribution data. Here, we illustrate a workflow for this task, which
weaves together ecological principles, data considerations, and statistical models.
The statistical modeling itself follows a sequence that flows from exploratory data
analysis to model fitting, model evaluation and calibration, model validation, and to
applications. The process is first illustrated with a generalized linear model and then
extended to alternative tools, including generalized additive models, tree-based
models (random forests), and maximum entropy modeling (maxent). The results of
species distribution modeling can provide the basis for an initial site prioritization
(Chap. 8). But we begin with SDM because it introduces most of the empirical
challenges that arise in working with landscape-scale data: ecological data are
multivariate (and so redundant), noisy, and spatially structured. We address these
challenges in the next few chapters.

2.1 Introduction

The aim of species distribution modeling is to generate a robust model that can
describe the observed distribution of a target species in terms of environmental
predictors. This task is central to evolutionary biology, wildlife ecology, community
ecology, landscape ecology, and biogeography (Elith and Leathwick 2009; Franklin
2010). Applications vary across these disciplines, and the task travels under various
disciplinary guises: environmental niche modeling, resource selection functions,
habitat classification, and species distribution modeling. In this chapter, we will
use the term species distribution modeling (SDM), but we also will spend some time
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Space: Conceptual Geographic Parameter

Fig. 2.1 Species distribution modeling as a confluence of an ecological, data, and statistical model.
In most applications, this also entails translations between reference spaces

with the evolution of this task from local-scale applications in habitat classification
to larger-scale applications in species distribution modeling.

In habitat classification, the focus is often a target species of interest to manage-
ment, e.g., game species or rare species. In any case, applications typically have the
explicit goal of modeling species-habitat relationships so that predictions can be
made about cases beyond those observed to build the model. Implicit (and some-
times explicit) in habitat classification is the presumption that the modeled habitat
association is real and robust, so that if the availability of habitats in the study area
were to change due to natural processes (e.g., succession) or direct management
interventions, the focal species would respond accordingly by increasing or decreas-
ing in abundance or distribution. This application arises in wildlife management in
terms of habitat suitability or quality, with quality often defined in terms of local
vegetation structure or composition: a large part of wildlife management is vegeta-
tion management in an effort to improve habitat. At somewhat larger scales, the
predictor variables are those that vary over landscapes (e.g., related to terrain and
land cover) as well as climate variables. There has been an explosion recently in
efforts to model the potential impacts of climate change on species distribution at
regional scales. That these two examples are essentially the same task underscores its
fundamental importance in ecology.

Austin (2002, 2007) has framed species distribution modeling in terms of three
models: ecology, data, and statistics. The ecological model includes natural history
or theory that accounts for our expectations about species distribution: which factors
are important, the form of species-environment relationships, how we expect species
to sort along environmental gradients, and so on. The data model refers to how we
collect measurements to capture this ecology: sampling design, what we measure,
and how we interpret these measurements. The statistical model formalizes the fit
between the first two models and provides for tests of significance and inference. We
will adopt this perspective as a convenient framework in which to consider species
distribution models (Fig. 2.1).
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This framing also invites an explicit consideration of the reference space. The
ecological model is conceptual, phrased in terms of ideas. The data model is
typically geographic, using geospatial predictor variables and (often) maps of the
model predictions. The modeling itself occurs in parameter space: the fitted coeffi-
cients as well as other parameters generated in model fitting (explanatory power,
goodness of fit, predictive success). Thus, the connections between models entail
active translation between reference spaces. For example, a map of model pre-
dictions might reveal spatial patterns in prediction errors, which might be interpreted
in terms of metapopulation theory.

Regardless of what statistical form the species-habitat model might take, there are
several general stages in the modeling. This begins with data preparation, proceeds
to fitting the model and then evaluating the fit. This typically leads to some
recalibration or tuning of the model, a recursive process of refitting and
re-evaluating. Ultimately, the model is accepted (tempered with a sense of its
robustness) and extended into ecological applications. In this chapter, we begin
with the example of one particular model, but these considerations apply to all
models and we consider them generically.

It is worth reflecting that this general task has evolved in spurts for many decades.
This all began when computers became widely available, so that it was possible to
implement statistical versions of iconic ecological ideas such as the Hutchinsonian
niche as a multidimensional construct (Hutchinson 1957). While most of the early
techniques are no longer in common usage, some of the seminal papers still provide
timeless insights (e.g., Green 1971; James 1971). A second wave of developments
began in the 1990s, when some new statistical techniques (e.g., generalized linear
models) came into vogue. We are now in the midst of another major revolution, in
part facilitated by essentially unlimited computational power and a wealth of very
large geospatial data sets on the distribution of biodiversity. Franklin (1995, 2023)
nicely bookends this period of modeling from the perspective of biogeography. We
close this chapter by benchmarking where we are now, how the tools are evolving,
and where they might lead. Hopefully, this chapter will prove useful and informative
no matter where the field moves from here.

Species distribution modeling is an enormous topic, and there are very many tools
available. In this chapter, we focus on the logical workflow, using a single technique
as an illustration. A few complementary tools are presented in an Appendix to this
chapter, which tools might be substituted readily into the workflow featured here. A
digital supplement (S2) includes a broader and more detailed discussion of various
tools now available.
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2.2 A Confluence of Models
2.2.1 The Ecological Model

A long and venerable tradition in plant community ecology invokes gradient
response in explaining plant species distributions (e.g., Whittaker 1967; ter Braak
and Prentice 1988; Austin and Smith 1989). In this, plant species responses to
environmental gradients are overwhelmingly nonlinear and interactive (i.e., nonad-
ditive). Importantly, competition is presumed to play a fundamental role in
governing species response to gradients (e.g., Grime 1977, 1979; Smith and Huston
1989), with better competitors displacing more stress-tolerant species from their
optimal habitats.

In animal ecology, a similarly venerable tradition invokes nonlinear or threshold
responses in the behavioral ecology of habitat selection (e.g., James 1971). Statis-
tical techniques used in habitat modeling vary considerably in their capacity to
accommodate this ecology. Clearly, some appreciation for the essential ecology of
a target species should inform the choice of tools used to model its habitat.

2.2.1.1 Plant Species Response to Environment

Austin and Smith (1989) distinguished two fundamental forms of environmental
constraints on plant species distribution. Direct gradients are constraints with a clear
ecophysiological effect on species performance (i.e., establishment, growth, or
survival). Examples might include temperature and soil pH. In general, we expect
species response to these gradients to be nonlinear and bell-shaped, ranging from
“too little” to “too much,” with “just right” somewhere in between (Fig. 2.2a).

A different form of direct gradient is a resource gradient, in which the resources
are consumed by individuals and this consumption alters the levels of resources
available to others. Examples include mineral nutrients (e.g., nitrogen), water, and
light. In general, we expect species to respond to these resource levels differently
than direct abiotic (non-resource) gradients: we expect the relationship to be

dry
cold

Constraint Resource Elevation

Fig. 2.2 Postulated forms of species response to (left) a direct abiotic gradient such as pH,
(middle) a resource gradient, and (right) a complex overlay of the two (after Austin and Smith
1989). In the middle, resource is soil moisture and plant performance decreases from adequate
moisture to drought conditions. On the right increasing cold temperatures at high elevations (blue
line) are a direct gradient while drought conditions at warmer low elevations act as a resource
gradient (red line); the result of this overlay is a curve that resembles a unimodal direct gradient as in
(left)
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Fig. 2.3 The role of competition in governing species response to environmental gradients. (a)
Species grown in isolation and (b) in competition. (Urban 2023, after Smith and Huston 1989)

monotonic, ranging between “not enough” and “plenty” (Fig. 2.2b). Depending on
how the resource level is measured, this curve might be either increasing or decreas-
ing: plant species response to available water would be an increasing curve, while
response to lack of water (drought stress) would be decreasing.

Note also that resource gradients can interact with direct abiotic gradients. For
example, while soil water availability acts as a resource at low to moderate levels,
once the soil becomes oversaturated, it can lead to anaerobic conditions and act as a
direct abiotic constraint; thus, species response to “water”” would be bell-shaped: an
increasing curve reflecting a consumed resource followed by a decreasing curve
reflecting the impact of anoxia. It seems likely that temperature response in
mid-latitudes is similarly complicated. At low temperatures, there is a direct phys-
iological response to plant performance: the cold itself, as well as a shorter growing
season. At high temperatures, the impact is likely manifested indirectly via the effect
of temperature on evaporative demand; mid-latitude temperatures are not generally
so hot as to have a direct impact on physiology. Thus, the combined temperature
effect is an increasing curve from “too cold” overlapping with a decreasing curve
toward “too dry” (Urban et al. 2000; Fig. 2.2c).

Species response to direct gradients is often modified by competition, and theory
informs our expectations about how competition should modify species response.
Smith and Huston (1989) used an individual-based forest simulation model to
illustrate how trade-offs in life-history traits lead to shifting patterns of competitive
advantage along environmental gradients (water and light). In their model, tolerance
to low resource levels comes at the cost of decreased performance (lower growth
rate) under high resource levels. Thus, for example, drought-tolerant species are
outcompeted on mesic sites by drought-intolerant species, while drought-intolerant
species are excluded from xeric sites by more tolerant species.

This means that the observed distribution (gradient position) of tolerant species is
displaced from the mesic sites where that species would perform best, to more xeric
sites where it performs better than a drought-intolerant species. Similarly, the
drought-intolerant species has its distribution truncated on the more xeric end by
competition from the more tolerant species (Fig. 2.3, and see Urban 2023,
Chapter 2). This means, in the end, that the observed distribution of both species
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is governed by competition. This general conclusion is well-established in plant
community ecology (e.g., Grime 1977, 1979; Tilman 1982).

By contrast to direct gradients, Austin and Smith (1989) recognized indirect
gradients, in which the factors are presumed to be related to direct gradients but
have no such effect themselves on species performance. Familiar examples include
elevation or geographic position (e.g., latitude, longitude). In some instances, the
relationship between the indirect and direct gradients is reasonably straightforward.
For example, in mountainous terrain temperature decreases with increasing eleva-
tion. Similarly, continental-scale patterns in temperature and precipitation provide
for clear latitudinal or longitudinal gradients (e.g., as nearly orthogonal gradients in
the Central Plains of North America because of the north/south-trending Rocky
Mountains and consequent rain-shadow effect). Likewise, the moderated maritime
climates of coastal zones often can be modeled in terms of simple distance from the
coast (e.g., Urban et al. 1993). Urban (2023, Chapter 1) reviews various abiotic
variables that can serve as proxies for more physiologically important factors.

It is important to recognize that ecological theory is moot as to the form of species
response to indirect gradients, except to the extent that the correlated direct gradients
are known. As noted above, elevation can serve as a useful indirect gradient in the
mountains, but this unimodal response proxies for an overlapping direct (cold)
temperature effect and a resource gradient in available water. Likewise, the role of
competition is generally unknown for indirect gradients for the same reason. In
application, indirect gradients might provide useful predictions about species distri-
bution. But under conditions of rapid environmental change, especially climate
change, such indirect proxies might provide unreliable predictions to the extent
that the relationship between the proxy and the actual direct gradient(s) is unknown
(Urban et al. 2002; Lookingbill and Urban 2005). For example, the “cold” and “dry”
components of elevation might be decoupled to an unknown extent under climate
change.

2.2.1.2 Habitat Selection by Animals

The nature of species-environment relationships is reasonably well considered for
plants. For animals, the distinction of direct versus indirect variables is not quite as
clear. A great deal of research with animals—generally vertebrates, and especially
birds—has focused on what sorts of variables are best correlated with species
response. In most instances, the critical variables are related to foraging or breeding
behavior. For example, Klopfer (1965) used laboratory experiments to explore
behavioral cues in habitat selection by birds. In a seminal statistical study of bird
habitat relationships, James (1971) tried to capture these relationships explicitly in
her concept of the niche gestalt: this gestalt is the minimal set of structural features
that characterize the breeding territories of a bird species. Similarly, studies of small
mammals have emphasized variables related to nesting or foraging cover (e.g.,
Dueser and Shugart 1979); and studies of reptiles have used variables related to
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foraging substrates (e.g., Schoener 1968), thermoregulatory microhabitat (e.g.,
Adolph 1990), and so on.

One theme in this research has explored whether proximate or ultimate variables
are better predictors of species response. An ultimate factor would be one that has a
direct, physiological influence on the animal (e.g., actual prey abundance). A
proximate factor would be some variable that is more easily measured but highly
correlated with the ultimate factor. For birds, this distinction is often phrased in terms
of structural cues in habitat selection. A structural cue is a physical component of
habitat that informs the animal about the levels of some other resource. Smith and
Shugart (1987) conducted a field study that asked whether ovenbirds (Seiurus
aurocapilla) relied more on forest structure than actual food abundance in selecting
breeding territories; they found that structural variables were better predictors than
actual measures of food abundance (invertebrates in the forest floor litter). This
makes sense given the timing of habitat selection: male birds establish territories
early in the spring before the critical food resources would be obvious; structural
cues are also likely to be less variable over time. More generally, animal microhab-
itat variables might be sorted into direct and indirect variables to parallel the
framework for plants, if we recognize ultimate factors as direct and proximate cues
as indirect variables. It seems that many microhabitat variables might be somewhat
indirect indicator variables for ultimate factors that are often not easily measured.

By contrast to plant ecology—where competition is played out in real time—the
role of competition in structuring animal communities is sometimes more of an
evolutionary construct. MacArthur’s classic (1958) study of warblers emphasized
that their different niches kept the species isolated, effectively avoiding active
competition. Connell (1980) referred to this as the “ghost of competition past,”
again emphasizing that competition over evolutionary timescales has acted to
minimize competition on ecological timescales. In times of rapid ecological change
or with the introduction of new (especially exotic) species into ecosystems, this
presumption is much harder to support. Interactions of other sorts, however, are now
being incorporated into some models of animal species distribution. For example,
Giannini et al. (2013) presented a case in which they modeled the distribution of
bumble bees (Bombus) in terms of brood parasites and the host plant that the bees
pollinate.

2.2.1.3 Biotic Interactions and Species Distribution Models

Wisz et al. (2013) reviewed the evidence that biotic interactions affect species
distributions across a range of scales, including interactions within- and across-
trophic levels. They suggest some avenues by which these interactions might be
accounted for more directly in species distribution models. Inferences about biotic
interactions can be confounded by correlated (and sometimes unobserved) processes
or constraints. Dormann et al. (2018) offer guidance on how to interpret the possible
influence of biotic interactions on species distributions and models of these.
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One emerging approach is joint species distribution models (Ovaskainen et al.
2010; Pollock et al. 2014; Clark et al. 2014, 2017; Warton et al. 2015; Tikhonov
etal. 2017; Wilkinson et al. 2019). JSDMs model species collectively, to account for
patterns of pairwise covariation among species. Such covariation might occur due to
joint environmental responses (positive or negative, measured or not), or to actual
interactions among species (typically unobserved). The models are constructed by
estimating the environmental effects and also fitting the covariances among species
on the residuals of the environmental influences. We attend these models in a
supplement (S2.5) to this chapter.

2.2.1.4 Scaling Considerations

Much of the classic literature on species distributions was founded in niche theory,
and a primary concern was inferring the role of competition in governing species
distributions. By contrast, Pulliam (2000) notes that many recent applications in
landscape ecology and conservation are couched in metapopulation theory (Urban
2023, Chapter 6). In this, source habitat patches (i.e., rich patches) are expected to
subsidize poor-quality sink patches via dispersal (Pulliam 1988). This switch in
theory has two important implications for habitat modeling:

1. Metapopulation theory predicts that the realized distribution of a species might be
larger than its potential distribution, if individuals populate marginal or unsuitable
habitat (sinks) because of dispersal subsidies from productive (source) habitat
nearby. This is in contradiction to the Hutchinsonian model, which argues that
competition should render the realized niche narrower than the fundamental
niche. (This might be subtle to visualize: the metapopulation case requires the
translation from a distribution in geographic space into a distribution in an
appropriate parameter space, while the Hutchinsonian case is constructed only
in parameter space. We delve into translations between spaces below.)

2. On landscapes, where dispersal is explicit of interest, dispersal subsidy and
isolation both appear as model failures (misclassifications)—hence, model fail-
ures might well be as interesting ecologically as cases where the model “works.”
In particular, occupancy of “not habitat” might suggest dispersal subsidies, while
unoccupied “habitat” patches might indicate isolation effects. Both cases are
ecologically compelling.

The shift in underlying theory from niche theory to metapopulations also wit-
nesses another key issue in habitat modeling: a change in scale of analysis. Niche
theory, focused on competition, rightfully is addressed at scales at which species can
interact. Thus, we began with studies of microhabitat partitioning within a habitat
patch measured on the order of hectares (e.g., a forest stand). With the shift to
metapopulation theory, the study area shifts accordingly to landscapes, where the
process of interest is interactions among habitat patches—which habitat patches
might support within-patch studies of microhabitat pattern. Recently, as conserva-
tion efforts have expanded to continental or global scales, habitat models are being
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invoked at much larger scales and typically at correspondingly coarser spatial
resolution. This change in scale is often keyed by a change in labeling: as spatial
extent increases, habitat classification becomes species distribution modeling, and
the ecological context shifts from community ecology to biogeography. Species-
environment relationships modeled at multiple scales—microhabitat, landscape, and
regional or subcontinental—thus invoke different underlying theory and different
ecological processes that govern species response (Johnson 1980; Morris
1987; Peterson 2006). The scale of analysis also has important implications for the
data model invoked in the application. But while the ecological and data models
might vary with scale, the statistical model is often essentially same, mechanically, at
any scale.

2.2.2 Data Models

The data model refers to the selection of actual measurements used to fit a habitat
classification model. This is informed by the underlying ecology. In some instances,
the way that the data link to ecology is rather straightforward. For example, in
MacArthur’s classic bird studies in the 1960s, there was a direct relationship
between foliage height diversity and bird species diversity (MacArthur et al. 1961;
see also Wiens 1974; Cody 1981; Robinson and Holmes 1982). This is because
different bird species nest and forage at different locations (heights) within a forest,
and so the variety of nesting/foraging substrates readily explains bird species
diversity.

In field studies of habitat relationships couched in niche theory, the choice of
habitat measurements can be guided by a naturalist’s appreciation of the life history
of the target species. Classic studies of birds and small mammals provide good
examples. In many instances, however, the link from ecology to data is less
straightforward. This is especially true as we attempt to scale up from local “habitat”
to more regional “species distributions.”

2.2.2.1 Scaling Data from Microhabitat to Regional Applications

Today species distributions are modeled at increasingly larger spatial scales: land-
scapes, regions, entire continents, and even global patterns. These changes in scale
have important implications for the data model underlying habitat classification.

The Landscape Scale At the landscape scale, species distribution models often rely
on geospatial data held in a geographic information system (GIS). In this, two kinds
of explanatory variables might be used. One kind is larger-scale versions of the same
variables described above; for example, in plant community ecology, landscape-
scale studies still need to address the key factors of temperature, soil moisture, and
other edaphic factors. The difference is, at the landscape scale, these factors are
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indexed with geospatial variables derived from digital elevation models (DEMs) and
rather limited information on soils (Moore et al. 1991a; Urban et al. 2002; Looking-
bill and Urban 2005; Urban 2023, Chapter 1; and see Wilson et al. 2013). For animal
studies, geospatial variables related to vegetation structure and composition are
rather difficult, as these are often derived from land cover data with rather low
information content (e.g., the National Land Cover Dataset, Homer et al. 2004).
Newer remote sensing platforms such as lidar (Lefsky et al. 2002; Bergen et al.
2009) provide some hope for indexing vegetation structure more effectively; simi-
larly, hyperspectral imagery with appropriate spatial resolution (e.g., Martin et al.
1998; He et al. 2015) holds some promise for indexing vegetation composition in
terms appropriate to landscape-scale habitat models. Data-fusion methods integrat-
ing structural and compositional information (e.g., He et al. 2015; Hakkenberg et al.
2018) seem especially promising and are evolving rapidly.

One issue that commonly arises in geospatial approaches to habitat modeling is
the treatment of “point” species occurrence data relative to the spatial grain of
geospatial data. For example, a species occurrence would typically be recorded as
an area-less point, but then would be overlain onto geospatial data extracted from a
GIS. For example, the occurrence of a bird species with a 1-ha territory might be
matched to land cover data with 30-m cell sizes. This invites some error because of
spatial registration (the bird point might intersect the wrong land cover pixel because
of locational error). Ecologically, it would make sense to rescale the land cover data
to the scale at which the bird actually interacts with land cover—at 1 ha. To do this,
one might simply compute the relative land cover (e.g., percent forest) within a 1-ha
aggregate around the bird point. This has three effects, all positive: (1) it scales the
bird data to the land cover data; (2) it converts a categorical variable (land cover
type) to an interval-scale variable with more information content (percent forest
instead of forest/not); and (3) it reduces the possible influence of imprecision of
spatial registration.

A second set of variables emerges as new at the landscape scale: variables related
to dispersal (e.g., various proximity or isolation indices) or the larger spatial context
of a site (e.g., patch size, or the amount of developed land cover within some
neighborhood around a focal site). These two kinds of variables naturally invite
the question of the relative importance of local as compared to landscape-scale
variables in explaining species distribution. Such two-scaled studies have been
done for small mammals (Martin and McComb 2002; Michel et al. 2007), birds
(Cushman and McGarigal 2002; Grand and Cushman 2003; Lawler and Edwards
2006), and reptiles (Moore and Gillingham 2006). Scott et al. (2002) include a
number of contributions concerned with the scale of habitat relationships. We return
to the issue of distinguishing spatial effects (e.g., dispersal) relative to environmental
effects in Chap. 6.

Regional and Larger Scales Conservation groups and the climate-change research
community have extended habitat models to ever larger scales. Indeed, these two
camps are now merging as conservationists begin to weigh the implications of
climate change on biodiversity. At these large scales, the spatial resolution of the
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analysis tends to be rather coarse (e.g., based on 1-km? imagery and DEMs, and
often much coarser). Appropriately, the variables invoked in these models tend to
emphasize regional variation in climate, such as in so-called “bioclimatic envelope”
models (e.g., Busby 1991). These models are at home in the realm of biogeography,
just as microhabitat studies belong to community ecology and landscape ecology
provides the disciplinary context for studies at that scale.

Interestingly, in studies of plant distribution, the same factors are invoked at all
scales—temperature, moisture, fertility—but the actual variables used to index these
factors vary considerably across scales (Stephenson 1998). In general, at increasing
scales the explanatory variables tend to become more indirect estimates of the target
factors. For example, a fine-scale study might measure soil moisture directly; a
landscape-scale study would use terrain-based indices of exposure (evaporative
demand) and drainage indices; a regional study might use mean growing-season
precipitation or a drought index; and a global study might rely on mean annual
precipitation. In this, it often is logistical constraints that govern the choice of
variables, even though the same underlying ecological model informs these
decisions.

By contrast to landscape-scale studies that explicitly compete local versus
landscape-scale variables in model evaluation, regional and larger-scale applications
do not seem to have embraced a multi-scale modeling approach. This is despite the
reality that the larger-scale patterns must have landscape- and finer-scale factors
nested within them. In part, this might be logistical: empirical estimates of finer-scale
variables are not often available at continental and global extent. This omission
confers some uncertainty in model interpretation, as we cannot know if the correla-
tions with coarse-scale factors are direct, or if the species is responding to finer-scale
variables embedded within the measured factors.

Forecasting species response to climate change offers a good illustration of this
dilemma. One might readily correlate the distribution of a species with regional
climate variables. For example, the distribution of the Mexican spotted owl (Strix
occidentalis lucida) in the southwestern United States might be modeled in terms of
temperature. This model would side-step the question of whether owls respond
to temperature directly, or if they actually respond to vegetation (itself responding
to temperature), or if the owls are responding to prey species (themselves responding
to vegetation or to temperature). Partial regression or multilevel modeling might help
answer these questions, but only if all of the candidate variables can be measured in a
multi-scale sampling design. From this perspective, rapid climate change offers itself
as a grand—if poorly controlled—experiment, as it is likely to decouple climate and
vegetation (and perhaps competitors or predator/prey relations). In particular, forest
response to climate change might be lagged by decades or even centuries (e.g.,
Urban et al. 1993), while owls (and their prey) would be free to respond to
temperature much more quickly. This decoupling among factors might give us the
opportunity to “let the owls show us” what they are tracking as “habitat.”

This hypothetical example underscores a fundamental issue in species distribu-
tion models: however elegant statistically, they are still correlational, and only
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experimental manipulations of the explanatory factors can reveal which variables are
actually governing species response.

2.2.2.2 Exploratory Data Analysis and Variable Selection

In every case, variable selection should be informed by exploratory data analysis
(Chap. 3). In particular, species-environment correlations (Chap. 3, Sect. 3.3.3) or
pairs plots (Fig. 3.8) can indicate the strength of the relationships as well as whether
the relationships will meet the assumptions (e.g., normality, linearity) of many
regression-based species distribution models.

Exploratory data analysis can also be quite helpful when selecting among mul-
tiple predictor variables that are correlated themselves (see below).

2.2.2.3 Variable Selection Under Redundancy or Collinearity

The reality is that models are often developed from a set of variables that are
indirectly related to factors that we believe shape species distributions. For example,
we might consider a variety of terrain-based indices of soil moisture. Climate vari-
ables are especially vexing from this standpoint, as from standard datasets, we might
consider monthly minima, maxima, and means for temperature and precipitation as
well as any number of synthetic indices of temperature or moisture—dozens of
variables. This means that the sets of variables we use as predictors tend to be
correlated and redundant.

Correlations among predictors give rise to two complications in species distribu-
tion models. The first is statistical: given strong correlations among the predictors,
the model can be degraded statistically so that the estimates are unstable or biased.
The second complication is ecological, in the sense that with redundant predictors,
we cannot easily gain a clear understanding of which factors define “habitat.”

One solution to this is to manage the degree of redundancy among predictors, so
that no pairs of variables are strongly correlated. There is no exact threshold for this,
but Dormann et al. (2013) suggested an absolute value of 0.70 as a reasonable
threshold correlation. As practical guidance, if a pair of predictors is more strongly
correlated than 10.71, we would discard one of the pair. In practice, we might choose
to retain the variable with the strongest univariate correlation with the response
variable (species) or the one for which it is easier to posit an ecological reason for the
correlation.

A special case of redundant predictors arises in geospatial applications in which
candidate predictors are generated in a GIS based on distances or spatial windows of
varying scales. For example, we might posit that a pine-dwelling bird might be
associated with the proportion of evergreen forest cover within the neighborhood of
a sample point; that neighborhood might be computed for windows of increasing
size around the point (e.g., windows of 100, 500, 1000 m radius). These measures



2.2 A Confluence of Models 41

would be correlated (because they are nested), so we would retain only the version
that is most strongly correlated with the bird’s occurrence.

Another solution to correlations among variables is to summarize the pattern of
correlations using principal components analysis (PCA). PCA returns a set of
synthetic axes, which are mutually independent and thus can serve as nonredundant
predictors. We will return to this analysis in Chap. 4.

We return to this issue of correlated predictors when we consider how to interpret
the relative importance of predictor variables in the fitted model (Sect. 2.4.2). (This is
not as straightforward as we would like.)

2.2.3 Inferential Design and Statistical Models

Statistical models of habitat affinities or species-environment relationships have two
components: an inferential design and the estimation (fitting) of the model. From our
perspective, the estimation component corresponds to the procedural details of the
model, and this depends on the model (we will consider a few). The inferential
component refers loosely to the assumptions we make about how the data are
collected and how these will be interpreted statistically. A key issue in this is how
we intend to interpret locations where we observe the species of interest, relative to
locations where we did not observe it—either because we looked but did not find it
there or because we did not even look (i.e., we only have “presence” data).

2.2.3.1 Inferential Design and Contrasts to ‘Habitat”

Selecting predictor variables is clearly crucial to the success of habitat models. But
how we will use these variables to distinguish “habitat” is also crucial. This falls into
the realm of inferential design, and this is a large part of how the data model is linked
to the statistical model. Depending on how the actual samples are collected, there are
a few experimental or inferential designs in species-habitat analysis (Manly et al.
2002).

To begin, consider that in a perfect (statistical!) world, we would collect data for a
habitat model by selecting random (independent) locations in the field; at each
location, we would tally the presence or absence (or perhaps, abundance) of the
focal species, along with a set of candidate explanatory variables. This is a classic
case/control design. This approach would meet the assumptions of most statistical
analyses including regression. The problem, of course, is that most species are
uncommon, so the frequency of “present” (case) sites would be very low relative
to “absent” (control) sites. Indeed, for rare species of interest in conservation
biology, we might not encounter any presences at all if we sampled randomly and
sparsely. Clearly, a more efficient design is needed. Jeliazkov et al. (2022) offer
some perspective and guidance on sampling and modeling distributions for rare
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species (which, again, is most species). Three alternative designs are common in
species distribution models.

“Habitat” Versus “Nonhabitat” Samples The observations in this design consist
of two sets of samples. Locations where the species was observed (presences) are
deemed “habitat.” A set of contrasting samples is measured at points that were
censused, and the species was not observed (absences); these samples are deemed
“nonhabitat.” This is a case/control design as described above, although in practice
the sample locations might be stratified somehow rather than simply random (recall
Chap. 1).

Clearly, there could be several reasons why a species might not be observed in a
particular location at the time of sampling: it might be present but not observed
(cryptic or quiet); it might be in residence but not at that precise location at that the
time censuses were conducted; the location might be suitable habitat and yet
unoccupied for biogeographic or other reasons; and so on. We return to these
possibilities later. For now, it will be sufficient to note that these two groups provide
maximum contrast for a model of species-habitat relationships.

“Habitat” Versus “Available Habitat”’ In this, as in the case above, “habitat”
samples are locations where the focal species has been observed (presences). The
second group consists of a (typically) random sample of the study area, providing a
sample of the habitat types available to the species (i.e., where the species might
have been observed). These sites are often termed pseudo-absences because they are
used in model fitting in the same way as observed absences. In this approach, the
second group will be interpreted as sites representing the range of options provided
by the study area, i.e., the various settings to which the species has reasonable
access. In this, the null hypothesis is that the species uses habitats in the same
proportion or frequency that they are encountered; it exhibits no habitat preferences.

Either the habitat/nonhabitat or the habitat/available habitat model can provide a
useful distinction of what constitutes “habitat” for the focal species. One key
difference will be in how model errors (misclassifications) are interpreted, which
we will attend later. Both approaches are discriminatory in that they seek to
distinguish “habitat” samples from another group of samples. The “habitat/available
habitat” approach is very common currently, as data on many species of conserva-
tion concern are collated as presence points only.

“Presence-Only” Models A third design is based only on the characteristics of the
“habitat” samples (presences), making no assumptions about sites where the species
was not observed (or was not censused). This approach is generative in that the
model attempts to describe the “habitat” samples without reference to another group
of samples. A simple example might be an “envelope” model by which we define
habitat based on the minimum and maximum values observed, over the presence, for
key explanatory variables. For the owl example above, that might be expressed as a
climate envelope: the owl occurs on sites between Ty, and T;,,x degrees in mean
annual temperature and between P,;, and P, in total annual precipitation.
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Note that it is hard to interpret those ranges without reference to the range in
temperature and precipitation over the larger study area! In such applications, it is
common to present the presence-only solution within the context of a (typically)
random sample of the study area—a sample of available habitats. But in this case, the
pseudo-absences are purely context; they do not influence the estimation of the
model.

It might be noted here that many discriminatory models that rely on pseudo-
absences are sometimes presented as “presence-only” models. They are not, though
it is true that they only have actual observations on presences. Models that use
pseudo-absences have solutions that depend on which pseudo-absences are used
(different sets of pseudo-absences generate different fitted models); presence-only
models depend only on the presences.

Presence-only models are appealing because they neatly side-step the ambiguities
associated with “absences” in a conventional design. These models do, however,
sacrifice some statistical leverage by not using the contrast available from a second

group.

2.2.3.2 Inferential Issues

It might be useful to consider these alternative approaches in terms of a simple
statistical test, the r-test. In this, consider a habitat model that consists of a single
explanatory variable. In the presence/absence case, the model is a two-sample #-test,
and the question is whether the two subsamples (presences, absences) have different
means given their variances. The presence/pseudo-absence case is equivalent to a
one-sample #-test, where the question is whether the presences differ (have a
different mean, given their variances) from a random draw from the pooled sample.
In the presence-only model, there is no inference to be made—the model is purely
descriptive (i.e., it simply computes the sample mean and/or variance).

Because of the increasing availability of species occurrence data provided as
“presence points,” models that contrast presences with pseudo-absences are increas-
ingly popular. This invites careful attention to what the pseudo-absences represent. It
is worth emphasizing here that the presence/pseudo-absence model is actually two
models: one that contrasts the presences with the pseudo-absences and a second
(implicit) model that asserts that the random pseudo-absences are an appropriate
representation of the habitats available within the study area. If the latter is not true,
then the model itself might be misleading even if it is highly significant statistically.
Barbet-Massin et al. (2012) provide some guidance on the selection of pseudo-
absences, but this is still an active area of methodological research (and see Elith
2019).

Selection of pseudo-absences can provide a substantial filter on the ecological
implications and interpretation of a model. For example, return to a habitat model for
the Mexican spotted owl in the southwestern United States. The bird occurs in
mixed-conifer forests, which themselves occur at mid- to higher elevations in the
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mountains (we will ignore realistic complications to this over-simplification for
now). Now consider three approaches to choosing pseudo-absences:

1. If we were to sample the landscape randomly, we might include in the pseudo-
absences a large number of samples in desert or semiarid grassland, as well as
(perhaps) some cities and open water. A habitat model constructed from these
data would show us that owls live in forests, and it would do so with high
accuracy because the habitat contrast is so flagrant.

2. If we were to sample pseudo-absences by masking out the land covers that are
clearly not habitat (desert, agriculture, semiarid grasslands), we would generate a
more nuanced model that might tell us what kinds of forests or woody vegetation
types owls prefer (e.g., mixed conifers more than pines or pinyon-juniper).

3. If we were to sample pseudo-absences even more narrowly within forests, we
might learn what kinds of mixed-conifer forests the owls prefer. In this series of
three models, the statistical significance and accuracy would likely decrease at
each step while the ecological nuance would increase: a trade-off. Clearly, we
should pay attention to how we sample pseudo-absences!

2.3 Fitting the Statistical Model

There is a large and growing collection of statistical tools for modeling species-
environment relationships, and we need not review all of these here (but see Johnson
and Gillingham 2005; Elith et al. 2006; Tsoar et al. 2007; Elith and Leathwick 2009;
Fletcher and Fortin 2018; Norberg et al. 2019). Instead, the general approach for
model fitting and evaluation is outlined using a relatively simple model, a logistic
regression (a form of generalized linear model, GLM). We begin with the logistic
regression because it is well-established in practice and reasonably intuitive. We will
develop the workflow using the GLM—from model estimate, to model interpreta-
tion, to model tuning and evaluation. Much of what we consider here with GLMs
applies similarly to any other model.

2.3.1 Modeling Workflow

The workflow for developing a statistical species distribution model unfolds in
stages that begin with the adoption of a data model, iterates through a process of
model fitting and evaluation, and then extends into model applications that return to
the data and ecological reference spaces (Fig. 2.4).

While some details of this workflow depend on the statistical model, the general
approach does not. Modeling comprises an initial stage of iterative model-fitting,
evaluation, and calibration. This is typically focused on a single data set, and the
evaluation is relative to the data used to develop the model. This is not an indepen-
dent test of the model, and we will use the term model verification to refer to these
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Fig. 2.4 Workflow for fitting and evaluating a species distribution model. The workflow enters
from the data model and in applications exits to the data and ecological models (Fig. 2.1)

dependent tests. The model might also be tested using data not used to fit the model.
This is an independent test of the model, a stronger test, and we will use the term
validation to refer to such independent tests (see Chap. 9 for more on model testing).
Finally, once a model is verified (and perhaps calibrated) and validated, it can be
used in practical applications.

Verification Initial model fitting begins with estimating the model and then evalu-
ating the fit. Often, there can be considerable latitude in this evaluation and ample
opportunity to refit the model after making adjustments based on the initial evalu-
ation. This fitting, evaluation, and refitting iterates until a satisfactory model is
selected. In evaluating a statistical model, we will attend a few aspects of the fit:

1. Does the technique provide a test of significance for the model? That is, are the
observed differences real with reasonable statistical confidence? While not all
models provide a P-value, many do and this is useful (but not always crucial) to
model evaluation.

2. Does the technique provide an ecological interpretation of “habitat”? That is,
which of the predictor variables are most important in distinguishing “habitat”?
Do these relationships make sense ecologically?

3. How well does the model work? How much of the variation does it explain? In a
simple regression, this would be captured in the regression R statistic, and there
are similar indices for many models.

Beyond its R? (or equivalent), does the model provide a means to predict the
likelihood that a new, unobserved sample is “habitat”? That is, can the model be used
to classify new samples? In model verification, we will often want to know how
many of the cases used to train the model were also classified correctly. For
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landscape-scale or regional studies, especially, we might wish to map these pre-
dictions over the entire study area (and see below).

Validation Model calibration with the data used to build the model (i.e., training
data) is a necessary but not sufficient test of the model. A stronger test is to evaluate
the model against independent observations, a model validation. There are several
ways to do this.

1. When data are sparse, one way to validate a model is to use subsets of the training
data to test the model. This is cross-validation, commonly k-fold cross-validation.
In this, the training data are partitioned randomly into k subsets (folds). In tenfold
cross-validation, the model is fit 10 times; each fit is based on 9 of the 10 subsets
of the data, and each model is used to predict (classify) the observations in the
withheld subset. After ten models are fitted, each of the observations has been
classified using a model that was independent of the test data, providing an
aggregate validation of the model but using the same training data set.
(In many instances, the ten models themselves can be averaged into a single
model, an ensemble model; see below.)

2. Another approach to validation is to withhold a proportion of the training data for
testing. For example, we might set aside 25% of the training data and use it later
to validate the model. This is expensive, of course, in terms of data and so for
smaller data sets practitioners often resort to cross-validation to use the limited
data more efficiently.

3. The highest standard for model validation is to test the fitted model using a
completely independent data set—from elsewhere in the study area, a different
study area, or a different time. In practice, the farther removed from the training
data, the stronger the validation.

Validation increases our confidence in a model and helps us temper our interpre-
tation of applications of the model beyond the domain of its initial development and
fitting. We return to this theme, more generally in Chap. 9.

Applications Once verified and validated, a model can be used in applications that
extend it in space or time. Making predictions with the model by mapping these into
a GIS is one common application. If this is a mapping into the original study area,
filling in unsampled locations, this is an interpolation of the model. Extending the
model into a new region or study area is an extrapolation in space. Projecting the
model into the future, a model forecast, requires an explicitly stated scenario about
the assumptions supporting the application.

In the following sections, we work through the flow of fitting, evaluating, and
calibrating a GLM. In appendices to this chapter, we consider a sampling of
alternatives to the logistic regression illustrated here. In this, we focus on three
complementary approaches that reflect the diversity of approaches currently popular.
These include generalized linear models (GLMs) and their extension to generalized
additive models (GAMs; Appendix A.l.1); classification and regression tree
(CART) models, and especially extensions to these including random forests
(A.2.2); and maximum entropy modeling as available in the software package
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maxent (A.3.2). We also consider the recent advent of joint species distribution
models, which estimate habitat relationships for multiple co-occurring species
simultaneously (Supplement S2.5). Again, most of the issues illustrated here using
the logistic GLM can also be applied to these other models; they are substitutable or
complementary workflows.

2.3.2 The Generalized Linear Model

Generalized linear models (GLMs) are extensions of the familiar linear model (i.e.,
linear regression) in two ways. First, GLMs admit a transformation from linearity,
specifically via a link function that converts the linear prediction to a nonlinear form.
Second, GLMs admit alternative distributions for the response variable. Recall that,
in a linear model, the response variable (and hence the model error) is presumed
normal (Gaussian). GLMs include forms with Poisson distributions suitable for
count data (such as provided by field censuses) or data tallied as frequencies by
category and binomial distributions for a binary response (such as in the case of
habitat classification). The common distributional families of GLMs are associated
with common link functions as well: the Poisson model with a log link, and the
binomial model with a logistic link, and so on. Of course, one familiar version of
GLM is the Gaussian family with an identity link: the linear model itself.

Logistic regression is a form of generalized linear model in which the response
variable is binary. In the cases we will consider, this categorical response is group
membership. The groups might be “presences” versus either known “absences” or
“pseudo-absences.” While these are ecologically different, statistically they are
exactly the same model.

For several years, logistic regression was the model of choice for habitat classi-
fication (Guisan and Zimmerman 2000; Guisan et al. 2002). The logistic model is
attractive in this instance for several reasons: it is rather accepting of ecological data
and can use mix categorical and continuous predictor variables. The model predicts
the likelihood of membership in the target group, that is, the probability, on [0,1],
that a sample is “habitat.” This probability is often interpreted as an index of habitat
suitability.

To predict the likelihood of membership in group %, the logistic regression takes
the form:

U

PO =T

where u is itself a linear model on the predictor variables:

M:b0+b1)61+b2)€2+b3)€3+"'+bpxp+8 (22)
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Fig. 2.5 An illustration of a GLM as a logistic regression. The data are presences (green) and
absences (red), and the (blue) link function predicts the likelihood that a sample is “habitat”

for p predictor variables, where the b’s are coefficients to be estimated. Algebrai-

cally, this can be written:
Pk) 1\ _

where the left-hand side—the logit—is the log of the odds or log-likelihood ratio,
that is, the probability that a sample is in group k (i.e., “habitat”) compared to the
probability that it is not.

In the equations above, the binomial distribution is not evident but it accounts for
the reality that the data are 0’s and 1’s. The link function (Eq. 2.1) takes the linear
model (u), which varies from minus to plus infinity, and maps it onto the domain of
the data, as a sigmoidal curve ranging between 0 and 1 (Fig. 2.5).

GLMs are estimated using maximum likelihood methods, the goal of which is to
find the best possible estimate of the parameters of the model (the most likely
solution). In the case of the linear model, this estimator is well-known and is
provided by the least-squares solution, which itself has an analytic solution. In
more complicated models, the maximum likelihood estimate is not known in
advance, and so the solution is estimated using an iterative approximation (iterative,
weighted least squares). (Thus, the linear version of a GLM is an alternative way to
estimate a model that actually has an exact analytic solution.) The form of the
logistic equation lends itself to estimates of model variance in a generalized form,
termed deviance. Deviance is equal to twice the log-likelihood ratio. This term is
distributed approximately as X°, providing the basis for tests of significance of the
model.
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2.3.2.1 Model Evaluation: Preview

In the following sections, we turn to various aspects of model evaluation. Again, this
illustration uses the logistic regression. But these considerations can apply any
model that returns an estimate of habitat suitability (i.e., on [0,1]) and an estimate
of the contribution of each predictor variable. Details that depend on the idiosyn-
crasies of particular models are described in the appendices or supplement to this
chapter.

2.4 Model Evaluation

Thus far, we have considered the ecological, data, and statistical models used in
habitat classification and species distribution modeling. Now we turn to evaluating
the statistical model we have generated. This evaluation will focus on several aspects
of model performance. Not all of these aspects will be important for every applica-
tion, but these are probably the most common considerations.

2.4.1 Model Significance and Explanatory Power

Not all habitat models provide a strict test of overall significance. In general, models
that contrast two groups (“presence” versus “absence”, or “presence” versus
“pseudo-absence”) do provide a ready test: the test essentially is that the two groups
have different means on the predictor variables (this test itself being contingent on
the groups’ variances). The specific test depends on the details of the model. With a
logistic GLM, the linear model is tested as a regression (i.e., #-tests for the contri-
butions of each predictor variable in the linear model), while the overall test via the
link function is tested using X* (converting the log-likelihood ratio into deviance).

The test of strict significance (i.e., P < 0.05 or whatever arbitrary level) is
sometimes not very satisfying: many models might be significant without being
particularly informative or useful. Partly because of this, there is a growing interest
in model selection based on comparisons among alternative models, all of which
might be statistically significant. For example, in assessments framed in terms
of Akaike’s Information Criterion (AIC) and its variants, the explanatory power of
alternative models is evaluated by weighing the additional explanatory power of
more complicated models against the cost of estimating parameters for the added
terms (Burnham and Anderson 2002; Burnham et al. 2011). In this approach, model
selection often amounts to choosing among several models, all of which are prob-
ably statistically significant, and the result is the most parsimonious model.

Note that models that are truly presence-only cannot provide a simple test of
overall significance. There are also a few discriminatory models that do not provide a
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test of significance. For such models, the significance test is simply skipped and
evaluation turns to questions of whether the model is interpretable and how well it
works.

The relative explanatory power of a regression model is typically reported as it R
value, the proportion of the variance it captures. For a GLM and other models, the
equivalent index is a pseudo-R? value, which is the proportion of deviance the model
explains.

2.4.2 Interpreting the Importance of Predictor Variables

While significance and predictive accuracy are interesting from a statistical perspec-
tive, ecologists often are interested in interpreting a classification model. That is,
which variables are most important in distinguishing “habitat” from other samples?

In a regression, we interpret the coefficients to predict the incremental change in
the dependent variable given a unit change in the predictor variable. In the case of the
logistic GLM, the interpretation of coefficients is complicated by the fact that the
dependent variable is the log odds ratio (log likelihood). To interpret the coefficients
in terms of their effect on the dependent variable, we exponentiate the coefficient to
see the expected change in the odds given a unit change in the predictor.

In regression-based models, we often would like to infer the relative importance
of the predictors by comparing their coefficients. This interpretation can be con-
founded by the measurement units of the variables. For example, the raw coefficients
for elevation (ranging over hundreds or even thousands of meters) cannot easily be
compared directly to the coefficients for pH (typically ranging between 5 and 7). A
common way to make these comparisons more straightforward is to standardize the
predictors to z-scores before fitting the model. The trade-off in this is that standard-
ized coefficients cannot be compared across data sets (other studies), because the
standardization is particular to a data set. Thus, raw coefficients can be compared
across data sets (studies) but not within the same study, while standardized coeffi-
cients can be compared within a study but not across studies. In cases where we
might want to compare coefficients both within and across studies, we would need to
compute the model with both raw and standardized variables.

Regression-based models are also confounded by the fact that model coefficients
(hence, the apparent importance of variables) depend on the order in which they are
entered into the model. For sets of predictors that are themselves correlated, this is a
vexing problem for which there is no simple and elegant solution (Fig. 2.6).

Stepwise solutions to model construction can help fit parsimonious models. In a
forward stepwise solution, the first variable entered into the model is the single best
predictor; the next variable is the one that most improves the model. This second
variable is typically not strongly correlated with the first, and so this procedure
minimizes the complications illustrated in Fig. 2.6. Backward selection follows the
same logic but removes redundant variables. A full stepwise procedure begins with
forward selection but can proceed either forward or backward once there are several
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Fig. 2.6 Venn diagram
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variables in the model; the solution converges on the most parsimonious model. As
appealing as stepwise solutions might seem, they can be difficult to interpret because
the final set of variables depends very much on the correlations among predictors; in
some cases, strong correlations among variables can make the solution unstable.

In other models, there is no simple way to gauge the importance of individual
variables, and so special methods have been devised for this purpose. For example,
in the program maxent (Phillips et al. 2006; Appendix A.3), a jack-knifing procedure
is provided in which each variable is evaluated in turn during model construction.
The result is a summary in which the importance of each variable is indexed in
two ways: (1) the explanatory power of the model when only that variable is included
in the model and (2) the explanatory power when every variable except that one is
included. This summary indicates the importance of each variable while also
reflecting the degree to which the variable is redundant due to correlations with
other variables. A variable that has a strong relationship with the species will be
important by itself. A variable with a strong relationship to the species but which is
also highly correlated with other strong predictors will have high importance by
itself but low importance on withholding, as its effect will be compensated by other
(redundant) predictors. A variable with a strong relationship to the species and which
is not correlated with other predictors will show high importance by itself and high
importance on withholding. In this, the paired models (by itself/withheld) reveal
what we would like to know about variable importance. In principle, there is no
reason why this jack-knifing approach could not be applied to any species distribu-
tion model. With random forests, a similar approach has been developed to estimate
variable importance (Appendix A.2.2).
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2.4.3 Predictive Modeling and Classification Success

Whatever the statistical model used to classify habitat, the result can be reduced to a
comparison of the actual values from the data and the values predicted by the model.
For a CART model (Appendix A.2.1), this table emerges directly from the binary
classification. For models that predict likelihood or other continuous scalars (GLMs,
GAMs, random forests, maxent), the prediction must be thresholded to a binary
prediction. In this, the continuous prediction is set to 0 (not habitat) or 1 (habitat)
relative to a user-selected threshold value (Liu et al. 2005; Jiménez-Valverde and
Lobo 2007, and see below). The confusion matrix summarizes the model’s classi-
fication success in terms of matches and mismatches between model and data
(Table 2.1).

Here, the diagonal elements (@ and d) are classification successes, as model
predictions match the data. The off-diagonals (b and c) are misclassifications. The
model successes are unambiguous. But at this point, the choice of inferential design
influences the interpretation of model misclassifications. Importantly, the ecological
interpretation of misclassifications often can be immensely informative about the
model and also, more generally, about species-habitat relationships for the focal
species.

In a model that contrasts presences and absences, the off-diagonals are unambig-
uous and can be interpreted at face value. Case c corresponds to the species being
observed on a sample that has been classified as “not habitat.” While clearly a model
error, this case also is perfectly consistent with source/sink models of
metapopulations (sensu Pulliam 1988, 2000) and with metapopulation-based expec-
tations of species occurring in nonhabitat or marginal habitat patches adjacent to
actual habitat. Case b corresponds to instances of the species not occurring on
samples that are predicted to be habitat. There are several (nonexclusive) reasons
why this might be the case. It is possible that the species was there but it was not
observed during sampling (e.g., because the species is cryptic). If the species is quite
rare, suitable habitat might be unoccupied simply because the species is rare.
Alternatively, there might be biotic interactions such as competition or predation
that exclude the species from some otherwise suitable habitats. Finally, and consis-
tent with metapopulation theory, suitable habitat might be unoccupied because it is
isolated and unreachable. In short, while correct model predictions are satisfying and
reassuring, we often learn much more about the ecology of the system by examining
model misclassifications. In these cases, we might analyze the misclassifications in
terms of other candidate explanations: proximity to other (occupied) habitat, patch
size or geometry, and so on (and see below).

Table 2.1 Confusion matrix Data
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In a model that contrasts presences and pseudo-absences, the interpretation of
misclassifications is not quite as straightforward. In particular, misclassifications of
pseudo-absences are to be expected, at a rate that corresponds to the proportion of the
study area that qualifies as habitat, termed prevalence (strictly, the proportion of the
study area occupied by the species). That is, if 20% of the landscape is “habitat,”
then a random sample of the study area should itself be 20% habitat; a perfectly
accurate model would quite properly result in a 20% misclassification rate for
pseudo-absences samples predicted to be “habitat” (case c).

In either model, the actual locations where these types of misclassifications occur
in the study area can be immensely informative, and so mapping these predictions
into the study area is a useful method for interpreting the model (and see below).

2.4.3.1 Measures of Model Accuracy

The confusion matrix provides an intuitive approach to quantifying model perfor-
mance in terms of classification accuracy. For example, note that the diagonal
elements a and d tally the number of cases where the model prediction matches
the data. So, one easy index of model accuracy is simply the proportion of cases
where that is true:

_ (a+4d)
A= Gibicrd 24)

This is numerically correct, but not very satisfying for many applications. Con-
sider, for example, the case of a rare species that occurs in just 5% of the study area
(in a random sample). We can create a model that works with 95% accuracy by
simply predicting that the species never occurs anywhere: nearly perfect accuracy
from a model that predicts nothing!

An alternative approach indexes accuracy in terms of model successes relative to
what one might expect by chance (i.e., by guessing). A common method is the
Kappa statistic (Fielding and Bell 1997). Other indices of model accuracy can be
derived from the confusion matrix; Fielding and Bell (1997) review a dozen or so
and make several recommendations for applications. Pearson (2007) offers further
suggestions on significance testing.

2.4.3.2 Receiver Operating Characteristics (ROC) Curves

In a presence/absence model, the off-diagonal elements of the confusion matrix can
have different ecological interpretations. Clearly, in an optimal habitat classification
we would like to minimize both types of error. Yet in ecological applications, these
two errors might have qualitatively different costs or risks. For example, in the case
of a rare and threatened species, we might be interested in classifying “habitat” for a
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variety of reasons. At one extreme, we might wish to establish a reserve for the
species. In this case, we would naturally want to identify the very best habitat
available. To this end, we would want to ensure that the model is not overly tainted
with “nonhabitat” mistakenly included with the best (true) habitat. Alternatively, we
might be interested in monitoring or perhaps restricting management activities in
habitats that might possibly represent potential habitat. In this case, including some
nonhabitat with the true habitat is of rather less concern, because we would want to
err conservatively. This suggests that we might want a method for “tuning” a habitat
classification model toward the aims of a particular application.

Receiver operating characteristics (ROC) curves provide for this tuning. ROC
curves derive from signal theory, and the analogy to tuning a receiver such as a radio
is both intuitive and correct. What we require of a useful receiver is the ability to
capture the signal (frequency, or broadcast station) of interest while also rejecting the
signal (actually, “noise”) of stations at nearby frequencies.

ROC curves are based on the confusion matrix. To begin, consider some defini-
tions based on the elements of the table (notation follows Pearce and Ferrier 2000):

1. Sensitivity (Se) = number of positives (“habitat”) samples predicted correctly,
divided by the total number of actual positives; “true positives” = a/(a + c).

2. Specificity (Sp) = number of negative (‘“nonhabitat”) samples predicted correctly,
divided by the total number of actual negatives; “true negatives” = d/(b + d).

3. False positive fraction = number of false positives (absent from predicted
“habitat”), divided by the total number of negative samples, = b/(b + d).

4. False negative fraction = number of false negatives (present on predicted
“nonhabitat”), divided by the total number of positive samples, = c/(a + ¢).

One way to look at this classification is to consider the result of applying a
threshold probability to collapse a continuous model prediction from a logistic
regression into a binary classification (Fig. 2.7). In this, each set of samples (habitat
and nonhabitat) occupies a range of conditions along the probability scale, probably
with some overlap. Choosing a threshold at any point along this axis dictates the
balance of misclassifications.

For example, in the extreme case we could threshold the prediction probability at
0.0, in which case every sample would be classified as “habitat.” This would be silly,
of course—but at the same time it would eliminate false negatives. At the other,
equally silly, extreme, we could threshold at P = 1.0, in which case nothing would
be classified as “habitat” and we would eliminate false positives. Somewhere in
between is a probability threshold that can “tune” classification to a balance of true
and false predictions for any given application.

A graph of this balance of misclassifications as a function of varying the threshold
probability is a receiver operating characteristics (ROC) curve (Fig. 2.8). In this, the
false positive rate (equal to 1 minus the model’s specificity, Sp) is plotted on the
abscissa while the true positive rate (sensitivity, Se) is on the ordinate. Note that
because the row and column totals of the confusion matrix are fixed, we can capture
all of its elements with only two terms. The choice of true positives and false
positives, arranged as in Fig. 2.8, is an arbitrary convention but yields a graph that
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Fig. 2.7 Frequency distributions of probabilities predicted by a habitat model. In green is the
“habitat” sample (presences), while the “nonhabitat” (absences) sample distribution is in red. The
threshold (vertical bar) dictates the probability above which a sample is classified as “habitat”.
Green cases to the left of the cut-off are false negatives, while red cases to the right of the cut-off are
false positives. Sliding this threshold one way or the other controls the rate of false positives and
false negatives
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Fig. 2.8 An example of an ROC curve, as error rate for true positives (ordinate) relative to false
positives (abscissa). At the origin, the model classifies everything as “nonhabitat” and so mis-
classifies no actual nonhabitat. At the upper right extreme, the model classifies everything as
“habitat” and so misclassifies none of the presences but all of the absences. The diagonal is
equivalent to guessing. (ROC curve drawn using the ROCR package in R, Sing et al. 2005)

varies monotonically with the decision threshold. Also note that while the curve is
often drawn as a smooth line, this actually represents a summary of a large number of
confusion matrices, one for each decision threshold. Thus, if we computed sensitiv-
ity and specificity for decision threshold ranging from 0.1 to 0.9 in increments of 0.1,
there would be only nine points connected for the curve (11, if 0.00 and 1.0 are
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included). In practice, curves might be drawn from thresholds evaluated from
0.01 to 0.99 (i.e., at intervals of 0.01), providing more resolution. The diagonal
line in Fig. 2.8 represents the expectation under random assignment (guessing).

Given this framework, an index of classification success can be derived from the
ROC curve itself. The area under the curve (AUC) summarizes the overall accuracy
of the model and is independent of sample sizes or prior probabilities of each group.
Normalized by the total area of the frame (the bounding box), AUC ranges from 0.5
(= guessing; a truly inept model could yield an AUC less than 0.5) to 1.0 (perfect
discrimination). It is intuitive to note that the best compromise, the optimal tuning of
the model, is at the threshold probability that is at the tangent to the ROC curve that
is farthest from the diagonal reference line (the “guessing” line in Fig. 2.8). For a
presence/absence model this tuning maximizes the total proportion of correct
predictions.

In practice, the optimal tuning of a model using ROC methods depends on two
criteria. First, the relative abundance of “habitat” as compared to “nonhabitat” will
influence the optimal threshold. Clearly, if “habitat” is extremely rare then the
tendency should be to classify a novel sample as “nonhabitat” unless the counter-
evidence is strong. Thus, prior probabilities are important to this decision. Second,
optimal classification might depend on the relative cost or penalty of each type of
misclassification. For example, in the case of a rare and threatened species, the cost
of missing an actual habitat sample might outweigh the cost of misclassifying a
“nonhabitat” sample. Note that if the prior probabilities (sample sizes) and relative
costs of misclassification are equal for the two groups, the optimal tuning is at a
threshold of P = 0.50. Note also that this probably will not be the correct optimal
tuning for an actual model, as the priors and relative costs will almost never be equal.

While ROC curves are now routinely used to optimize classification models (e.g.,
Vayssieres et al. 2000; Pontius and Schneider 2001), they can also be used as an
objective means of tuning a model to desirable but not optimal classification rules
such as the application of classifying potential habitat for rare species in conserva-
tion practice. For example, we might tune a model to provide a target true positive
rate (e.g., 95%), or to bias the tuning to an application-specific balance of true
positives or true negatives. And while ROC methods are commonly applied to
logistic regression models, the approach can be extended readily to models of
other forms, as long as the model prediction is scaled as a probability on [0,1].

2.4.4 Habitat Mapping

With the increasing accessibility of geospatial data, species distribution models can
be extended to classify potential habitat over very large spatial extent. In this, the
model is encoded into the GIS as a database in which the independent variables are
predictors held as geospatial raster coverages (e.g., terrain-based indices, soil type,
land cover, and so on). In the case of logistic regression, the model takes the form of
a multiple regression equation, transformed by the logit link, with the predicted
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value indicating the probability of group membership (“habitat”). The result is a
continuous surface illustrating the probability of each location (cell) being a “hab-
itat.” Other statistical models also provide methods for mapping the predictions.

This continuous probability can subsequently be thresholded to yield a discrete
(habitat/nonhabitat) classification, at an ROC-optimized or any threshold selected by
the user. This after-the-fact thresholding provides an easy method for visualizing the
areal extent and spatial pattern of classified habitat at the selected threshold.

In the case of CART models (Appendix A.2.1), the mapping procedure is
especially straightforward because it amounts to a series of “IF ... THEN ...”
statements in the GIS (Moore et al. 1991b). CART models also offer the interpre-
tative advantage that individual branches of the tree can be mapped separately. There
might be several alternative pathways that lead to equivalently good “habitat” for the
target species, with each pathway specifying a different combination of predictor
variables. Substitutable resources would be one instance leading to alternative
pathways; complementary biophysical settings are another example. By mapping
these alternative pathways (branches) separately, the locations of these alternatives
can be seen directly. For example, Taverna et al. (2005) used CART models to
model and map conditions supporting relic hardwood stands in the North Carolina
Piedmont. Hardwoods persist on sites that were too poor to support crops during the
region’s agricultural past. These sites included bottomlands too wet to plow, uplands
too steep or dry for farming, and soils with high plasticity; these sites were spatially
disjunct and readily interpretable in a mapping of the separate CART branches.

Regardless of the form of the model, mapping the predictions can provide a
powerful visualization of model errors. A simple way to do this is to map the model
prediction (probability of being habitat, or a binary prediction) and then overlay the
actual samples with the points color-coded appropriately. For example, in a binary
map of predicted habitat, false negatives appear as “habitat” points outside of the
mapped habitat surface; mapped “habitat” locations devoid of actual presences (false
positives) are likewise interesting (Fig. 2.9). Both of these misclassifications are
intriguing from the perspective of metapopulation theory: they are precisely the
model “errors” expected of the theory.

Mapped model predictions can inform conservation actions. For rare species,
much of the area predicted to be habitat would be unoccupied and so false positives
would be common. Mapping these can suggest locations to be targeted in follow-up
surveys, especially in cases where parts of the study area might not have been
surveyed for logistical reasons. Mapping unoccupied “habitat” can also suggest
sites that might be suitable for reintroductions of species of special concern. Bartel
and Sexton (2009) illustrated this application in a study of St. Francis’s satyr
(Neonympha mitchellii francisci), an endangered butterfly.

Mapped misclassifications also can suggest potential explanations for the model
errors. Are they spatially clustered? Is there a regional trend or systematic bias in the
model errors? Is there another environmental variable that might explain the mis-
classifications? This graphical exploration of the model predictions can be an
efficient route to model refinements.



58 2 Species Distribution Modeling

Fig. 2.9 Schematic of possible outcomes from mapping the predictions of an SDM and overlaying
actual presence/absence data. Light shading, forest; dark shading, predicted “habitat”; filled circles,
presences; open circles, absences; black, correct predictions; red, misclassifications. In particular:
filled red circles are false negatives (occupied “nonhabitat””) and open red circles are false positives
(unoccupied “habitat”), both of which can be useful in interpreting the model

2.5 Benchmarking (and Further Reading)

Species distribution modeling is in the midst of an escalation that is seemingly
enabled by the growing availability of geospatial data sets at various scales, along
with increasing sophistication of specialized software and essentially unlimited
computing power. Drew et al. (2011) provide a sampling of perspectives on
landscape-scale applications. Fletcher and Fortin (2018) provide thorough coverage
of the ecology and statistics (in R) of SDM. Other publications are providing detailed
guidance on technical details such as sampling strategies for generating pseudo-
absences (Barbet-Massin et al. 2012; Elith 2019; Elith and Franklin 2024; Soley-
Guardia et al. 2024), as well as more philosophical guidance on selecting models
from the perspective of matching tools to applications or the intended inferences to
be drawn from the application (e.g., Elith and Graham 2009; Merow et al. 2014;
Guillera-Arroita et al. 2015). Even a cursory search for papers published on SDMs
reveals a daunting number of publications, and the pace is only increasing. This
suggests that it is nearly impossible to keep up with developments in this area. Still,
there is some consensus on where we are and how to work in this space.

2.5.1 Models and More Models: How to Choose?

There have been many comparative reviews of SDMs (e.g., Guisan and Thuiller
2005; Elith et al. 2006; Bahn and McGill 2013; Nieto-Lugilde et al. 2018; Valavi
et al. 2022). Norberg et al. (2019) reviewed 33 variants of 15 different SDMs
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(including 12 variations on GLMs!). Their conclusions are consistent with previous
reviews on several key points. Importantly, while some models consistently perform
well in many applications, there is no single “best” model because model perfor-
mance depends on the species being modeled, sample sizes, which environmental
predictors are used, and often, geography. They suggest using a few complementary
models, and then using validation tests (i.e., tests against independent data) to choose
the model that performs best for that application.

The growing availability of accessible software makes it easier than ever to
explore alternative models. In the R environment, for example, there are multiple
packages that can fit several alternative models to the same data set while facilitating
the processing (e.g., biomod and biomod?2: Thuiller et al. 2021; dismo: Hijmans et al.
2021; SDMtoobox: Brown et al. 2017; ENMTools: Warren et al. 2021; flexSDM:
Velazco et al. 2022; and see Fletcher and Fortin 2018).

Some caution might be due in choosing a “best” model. In applications aimed at
extending the model to other locations (extrapolations) or into the future (e.g.,
forecasts under climate change), the model that performs best under in model fitting
might not perform best in extensions. For example, while many SDMs perform
better when spatial information is included in the model (Keitt et al. 2002; Norberg
etal. 2019), these tend to not perform so well when extrapolated to other locations—
presumably because the spatial structure is different in the new location. Similarly,
models fit to current climate might not perform as well under future climate scenarios
if the correlation structure among climate variables changes.

2.5.2 Ensemble Models

Because there are so many models available and their performance might vary
substantially in a given application, practitioners increasingly resort to combining
the predictions of various models to generate ensemble models (e.g., Aradjo and
New 2007; Forester et al. 2013). This generally improves model behavior, because
ensembles reduce the idiosyncratic biases of any single model and provide a more
robust solution. In forecasting, ensembled models are appealing because they can
indicate not only the expected trends or patterns as predicted by the models but also
the degree of consensus (or conversely, uncertainty) among the models.

Models can be ensembled in various ways. At the simplest extreme, collapsing
the prediction of each model to binary (“habitat” or not) and then stacking the results
yields an aggregate prediction that can range of O (all models agree that a sample is
not habitat) to k (when all k¥ models agree that the sample is “habitat”). For
continuous predictions such as those on [0,1] (as is provided by GLMs, GAMs,
random forests, maxent, and some others), averaging the prediction provides a more
robust estimate of habitat suitability, as well as an estimate of the variance or range
of values across models (i.e., a measure of model-based uncertainty).

In general, a current consensus seems to be to use multiple complementary
models and to ensemble the results. But this recommendation is not as simple as
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we might wish. Intuitively, we would expect that in averaging several models, some
of the individual models might perform slightly better than the average while others
perform slightly worse (this is, of course, what averaging does!). This means that in
any given application, there is often a single model that out-performs the ensemble
(e.g., Crimmins et al. 2013; Zhu and Peterson 2017; Hao et al. 2020). In applications
within the empirical domain of model calibration (i.e., the same study area, same
time period), the simple solution is to choose the best single (validated) model for
that application.

Valavi et al. (2022), in their comparative review, found that the details of how a
model (e.g., the weighting of background points) was fitted could be as important as
the choice of model (e.g., GAM versus random forest). They also found that
ensembles performed better when the different models were calibrated individually
before ensembling.

In applications to novel conditions (e.g., a new study area, projections into the
future), the challenge is that we have no basis for knowing whether a single model
might outperform the ensemble. Here, the conservative approach is to use an
ensembled model—not because it will be most accurate but because we cannot
know in advance which individual model might be most accurate. This kind of
application also invites (demands) a deliberate approach to model validation, in
which the model(s) are subjected to a variety of validation tests, ideally involving
data sets from other regions and (if possible) other time intervals. This approach
underscores the cumulative nature of model testing, by which we gain confidence in
a model based on a growing body of validations using data that are increasingly
separated from the training data. We return to this general theme in Chap. 9.

2.5.3 Reporting

Some of the details that must be reported will depend on the particulars of the
application and the statistical model (see Appendices, below). But a number of
details will be important across most applications, and these can be itemized as a
checklist.

The checklist includes items related to the data, pre-processing, model fitting, and
post-processing.

Data preparation and exploratory data analysis:

N

What the data are (description of samples, observations); true presences, true
absences, pseudo-absences?

Sample sizes (presences, absences, or pseudo-absences)

Description of predictor variables and their ecological interpretation

Variable screening for correlations or redundancy

Editing (missing values, outliers) or data transformations

NENENEN
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For a GLM:

Model family (distribution) and link function

Relative weighting of observations?

Partitioning of data for model testing (withholding test fraction, cross-validation)
Model significance (P-value)

Explanatory power (pseudo-R?)

Significance of predictor variables (linear and linked models)

Estimates of variable importance (which variables matter, how this was done)
Thresholding and how it was chosen; if using ROC, report tuning results (AUC or
ROC curve)

Classification success on training data (confusion matrix)

Classification success on independent data or cross-validation

SN NN N N NN

NN

Other statistical models will have other details that matter, but the items above
typically will have counterparts for alternative models.

2.5.3.1 A Call for Standard Reporting Protocols

Zurrell et al. (2020) called for a standard reporting protocol for SDM applications. In
this, they suggest that practitioners address a set of questions in five general
categories related to the model application: an Overview, Data issues, Model
estimation, model Assessment, and Predictions. These issues are consistent with
the workflow presented here (Fig. 2.4) and with other guidance (e.g., Pearson 2007;
Franklin 2010; Guisan et al. 2017). Beyond this, the ODMAP framework provides a
standard rubric akin to metadata reporting protocols. Their web-based guide (https://
odmap.wsl.ch/) can facilitate this detailed reporting.

The ODMAP framework, if adopted generally, would solve three problems. First,
it provides a checklist for practitioners developing applications and so ensures that
decisions are made deliberately as the application is developed. Second, it provides
thorough documentation for end-users or clients who might want to use the results.
This transparency about how the model was estimated would also help with meth-
odological reproducibility across studies. Finally, a standard reporting protocol
would greatly facilitate meta-analyses and synthesis across applications.

To be clear, it might be apparent that many of the details in the protocol are
already best practices, and these include many of the considerations elaborated in
this chapter. What Zurrell et al. (2020) propose is not a radical change in how we
work but in how we report our work. It is easy to endorse their recommendations
(Fitzpatrick et al. 2021).
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2.6 Summary and Prospectus

Species distribution modeling can be framed as the intersection of an ecological
model, a data model, and a statistical model that connects ecology and data. The
ecology of the focal species motivates the selection of environmental predictors and
can also inform the initial choice of a statistical model consistent with the ecology.
The data model includes the selection of measured predictors as well as decisions
about scale, data transformations, and editing to reduce redundancy among pre-
dictors. There are very many statistical models available, including generalized
linear or additive models (GLMs or GAMs), tree-based models (especially random
forests), and the maximum entropy model (maxent). Joint SDMs, which model
several species at once, are emerging as a promising approach.

Current best practice is to explore several complementary modeling techniques
for any particular application. From these alternative models, a single model might
be selected based on its performance in validation tests. Increasingly, the alternative
models are combined into an ensemble to provide a robust, average model. The
overall modeling process entails a series of very many decisions about ecology, data,
model fitting and evaluation, and predictions and interpretation. A standard reporting
protocol for SDM applications has been proposed. This is long overdue and would
also be valuable in that it provides a useful framework and checklist for developing
SDM applications.

Species distribution models promise to remain an active and sometimes contro-
versial arena as new techniques are developed and competed. The field is moving so
fast that authoritative papers on the topic can become dated almost as soon as they
are published. But an appreciation for the ecological foundations and logical basis
for applications—even if based on now-outdated techniques—can still provide
useful guidance for emerging approaches and techniques. We will still evaluate
new developments in terms of the match between ecology, data, and statistics; and
we will still expect that statistical models can be evaluated in terms of their
significance, ability to estimate the relative importance of predictors, and accuracy
in prediction. The field will evolve but the foundations will remain the same.

Appendix A: Alternative Statistical Models

There are a lot of species distribution models out there, and more coming all the time.
Rather than review all of these (if that’s even possible), here we delve into a few
approaches that are relatively popular and robust methods for species distribution
modeling. These include extensions to the GLM, especially generalized additive
models (GAMs); tree-based models, especially random forests; and maximum
entropy modeling as provided by program maxent. Here we focus on these
approaches while also pointing to some additional alternatives. This material is
excerpted and condensed from digital supplement S2.
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A.l Extensions to the GLM: GAMs

The logistic form of the GLM is very common in modeling species distributions, as
well as similar applications such as development probability in models of land use
change (i.e., habitat models for humans, see Chap. 9). This GLM also serves as a
point of departure for a variety of extensions. Several variations are described in
Supplement S2.1.

One popular extension used in species distribution models is the generalized
additive model. Here we briefly describe the model as an extension of a GLM, then
emphasize the simplicity with which this can be substituted for a GLM in the
workflow outlined in Sect. 2.3 and following (above).

A.1.1 Generalized Additive Models

A generalized additive model (GAM) allows for substantially more flexibility in the
model fit (Yee and Mitchell 1991). In a GAM, the constant regression coefficients of
the linear predictor of the GLM (i.e., the b’s in Eq. 2.2) are replaced with smooth
(usually nonlinear) functions s of the predictors:

u="bo+ sy (x1) + 52 (x2) +53(x3) + -+, (1) +&. (A.1)

Typically, these functions are nonparametric smoothing functions such as scatter-
plot smoothers or splines (Fig. 2.10). While quite flexible in generating predictors, a
GAM does not produce an equation that can be “plugged in” to predict other cases
(though data can be fed through the fitted model to predict new cases). GAMs are
now quite common in habitat classification and species distribution modeling
because of their flexibility (Guisan and Zimmerman 2000, Guisan et al. 2002). In
particular, the nonlinear responses that can be modeled with a GAM can offer a
distinct advantage over the linear GLM.

Like a GLM, a GAM provides an estimate of the likelihood of group membership
and can be interpreted and post-processed in the same way that a GLM is evaluated.

That is, model evaluation is as described in Sect. 2.4 (above). These details are
not repeated here. In the larger workflow of SDM, substituting a GAM for a GLM is
a simple swap of the statistical model; the workflow is essentially the same.

A.2 Tree-Based Models

Tree-based models include classification and regression trees (CART models) as
well as various extensions of these. CART analysis is a flexible, nonparametric
modeling approach. The approach is actually two techniques, depending on the
response variable. A regression tree predicts an interval-scale dependent variable,



64 2 Species Distribution Modeling

3.5 — o

25 —

2.0 —

I I I I I I
0 10 20 30 40 50

Default Values

Fig. 2.10 Examples of smoothing splines of varying stiffness, from very stiff (linear, green) to
moderately stiff (red) to loose (blue). (Redrawn from Perperoglou et al. 2019; permission licensed
via Creative Commons)

while a classification tree predicts a categorical response. Thus, we might model
species abundance using a regression tree but use a classification tree to model
species presence/absence. Here we begin with a comparatively simple classification
tree and then proceed to a more complicated but (often) more effective extension to
this model, a random forest model. Tree-based models are described more broadly in
Supplement S2.2. Our focus here is on the workflow of the modeling process, in
parallel with the example illustrated with the GLM (above).

A.2.1 Classification Trees

The distributions of species or ecological communities often are governed by
complicated contingencies involving interactions among variables, substitutable or
complementary resources, or sensitivity to local context. In narrative descriptions of
these cases, we tend to use qualifiers such as “an,” “but,” “or”, “except,” and so
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on. For example, in the Sierra Nevada of California, USA, white fir (Abies concolor)
occurs not only at mid-elevations but also on higher-elevation sites with warmer
(southern) exposures or at lower-elevation sites with deeper soils or cooler (north-
ern) exposures. These contingencies tend to be difficult to capture in linear additive
models such as the logistic regression we considered previously. CART models, by
contrast, are well suited to exactly these contingencies, because of the way the
models are constructed.

Tree models are described in detail by Breiman et al. (1984) and Venables and
Ripley (1999; their Chapter 10); they are developed for ecological applications by
Iverson and Prasad (1998), De’Ath and Fabricius (2000), Vayssieres et al. (2000),
De’Ath (2002), and Urban (2002; see also Urban et al. 2002). Tree-based models are
discussed in more detail in Supplement S2.2.

Algorithm

A CART model is a recursive partitioning of the data set, in which each partition
aims to split the data into two groups that are as “pure” as possible in terms of the
dependent variable. After each split, the resulting subgroups are each split again, and
this recursion continues until the groups cannot be isolated more “purely.” The
algorithm requires user-defined groups. These groups might be several community
types or the binary case typical of habitat classification (e.g., “habitat” versus “not”).
The predictor variables can be any mix of interval-scale continuous, ordinal (rank),
or categorical factors. CART models are nonparametric, in that each variable is
transformed to rank scores before further analysis. One measure of group “purity” is
deviance, which is a log-likelihood measure based on expected group memberships
(other measures of purity are available).
The algorithm for recursive partitioning is intuitive and rather simple:

1. The procedure considers the group impurities implied by splitting the samples
into two groups, using as the threshold (splitting) value the difference between
each two levels of each predictor variable. That is, the algorithm considers every
possible split of the data. The data are then partitioned on the best “splitter” (best
level of the best variable) to generate two groups: the first branch of the tree. One
side of the branch is predicted to be “habitat,” the other “not habitat.”

2. This process repeats, for each subgroup, until a stopping rule is met. The stopping
rule could be that the final groups are completely pure (not common), that they
cannot be made any purer via additional splits on the available predictors, or that
the groups are too small to warrant further division.

Interpretation

The result of the partitioning is a tree-like structure (dendrogram) that traces the
conditions that lead to membership in each group. In this decision tree, different
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elevation > 1500m
true | false

(habitat) soil depth > 1.5m

true | false
elevation < 2500m |

true | false habitat N/NE-facing slope
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habitat
true | false habitat not
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Fig. 2.11 A classification tree to illustrate the contingent or compensatory conditions leading to
“habitat” for white fir in the southern Sierra Nevada. Each branch traces an interaction of environ-
mental conditions that result in suitable habitat (This heuristic is not fitted to actual data; see text)

variables can be invoked in different branches, variables can be reused or appear in
multiple branches of the tree, and a given group can appear in different branches
(as end nodes or leaves). The decision tree explains group differences simply by
tracing the conditions that lead to membership in each group. For the narrative
example of white fir (above), the decision tree traces the conditions explicitly
(Fig. 2.11). In the tree, the following interpretations are available:

Interactions appear as long branches (interaction pathways) that itemize the
combinations of conditions required to describe the group in terms of the pre-
dictors (e.g., “this and that and that . . .”). Importantly, these interactions are local
to a given branch of the tree. By contrast, in a regression the interactions (indeed,
all effects) are global—they apply equally to the entire data set.

Nonlinear relationships are modeled by invoking the same variable in sequence.
For example, to account for the mid-elevation distribution of a particular tree
species, we might find a CART branch that splits this as “Elevation > 1500”
followed by a subsequent split “Elevation < 2500.” Similarly, a bimodal or more
complicated distribution would simply reuse the same predictor to successively
refine the description of the distribution.

Substitutable relationships (“either this or that”) appear in different branches of
the tree, invoking different combinations of predictor variables. For example,
alternative settings for white fir (outlined above) might appear in one branch in
terms of soil depth and topographic convergence and in another branch in terms
of elevation and slope aspect. Because the conditions specified within a branch
are independent of other branches, there is no logical inconsistency in declaring
these alternative explanations within the same model.

Context-dependent contingencies are captured as the full set of conditions along a
branch leading to a group’s membership. That is, the prediction for a terminal leaf
is dependent of the context of everything higher up in that branch—including
interactions, compensatory relationships, supplementary conditions, or whatever.
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Again, these interactions are local to that branch: they do not apply to any other
branches of the tree.

Thus, the tree model explains group differences simply by reading the conditions
along each branch. In general, variables that appear “high in the tree” are more
important in differentiating groups, while variables that appear far down in the tree
(near the terminal leaves) provide more nuanced fine-tuning of the model. Beyond
this, it can be rather difficult to ascribe a partial explanatory power to each variable.
One way to do this would be to build two models, with and without a selected
variable, and compare the models in terms of their explanatory power. This would be
roughly equivalent to the comparison of full and restricted models using GLMs but
evaluated in terms of classification success for the CART model (and see below).

Prediction and Cross-Validation

Group membership for a sample is predicted by simply “dropping it through the
tree.” The prediction is binary: “habitat” or not. In verification, the model is often
used to predict group membership for the data used to construct the model—a
procedure termed back-classification. Back-classification of the data generates a
confusion matrix, as described previously for a thresholded GLM (Table 2.1).

In a classification tree, there is additional information available for each
terminal node: the number of correct and incorrect cases. These tallies can provide
a means to estimate the probability that a case in that node is “habitat” or not, simply
as the proportion of cases so predicted.

Because the tree model essentially describes the data as faithfully as possible,
CART models tend to be rather over-fitted to the data. That is, they capture
idiosyncrasies in the data that improve the model relative to those data but will
degrade the model when it is applied to other, independent data. There are several
ways to minimize this issue, including various forms of “pruning” by which idio-
syncratic (and probably over-fitted) branches are trimmed from the tree. Another
solution is especially pertinent here because it leads to a further extension that we
consider below.

A common way to minimize over-fitting is to use a cross-validation procedure. A
conventional approach is k-fold cross-validation. In this, the data are divided into
k (often 10, and typically random) exclusive subsets. A CART model is then
constructed using all but one subset, and this model is used to predict the withheld
subset. For tenfold cross-validation, this means 10 models based on 90% of the data
each time; and in this, each sample is predicted by a model that was constructed
independently from that observation. This, in turn, generates ten confusion matrices
and the misclassification rates can be averaged over the ten trials. In each trial, the
observations being predicted are independent of the observations used to fit the
model.

As with any statistical model, the overall accuracy of the model will increase as
the model gets more complicated (in this case, more branches). At the same time, the
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misclassification rate under cross-validation will increase for larger trees, reflecting
the over-fitting of the model. The goal of tree fitting is to achieve a balance between
model accuracy and model robustness. As with many procedures, there might not be
an exact solution to this compromise, but there are conventional “rule of thumb”
approaches provided in software packages.

Ensembling trees A tenfold cross-validation yields ten individual tree models. To
use these, the trees are averaged or ensembled. Doing so uses a combination of two
methods. For categorical predictors, the ensemble tree uses a “popularity vote” to
choose the splitting variable and the level(s) used for splits. Thus, the split that
emerges most often in the multiple model runs is the split used in the ensemble
model. For continuous predictors, the split level is averaged over multiple runs. The
end result is a single model.

A.2.2. Random Forests

A powerful way to generate an accurate and robust tree model involves generating a
large number of trees—a forest—and aggregating the results. A popular approach,
random forests, generates a very large number of trees (perhaps thousands), with
each tree developed from a subset of the observations (Breiman 2001). The individ-
ual trees are not pruned, but on ensembling, the idiosyncrasies of individual trees are
averaged away.

Beyond this subsetting of observations, a random tree also chooses a subset of
predictor variables available for splitting. Because not all of the variables are
available for each case, random forests provide a means to assess the relative
explanatory power of each variable, by identifying variables whose omission dra-
matically degrades model performance. This provides for a straightforward ranking
of variable importance over all the trees in the forest.

Elith et al. (2006) found random forests and other extensions to CART models to
be quite effective as predictors in their comparison of species distribution models.
These models are very popular tools in SDM applications.

CART models in general are sensitive to mismatched sample sizes for presences
and absences (or more typically, pseudo-absences), and they can also be confounded
by overlap between presences (true “habitat”) and pseudo-absences. As random
forests become more popular with practitioners, they are continually refined and
updated. Valavi et al. (2021) provide the current state-of-the-art along with some
suggested best practices.

A.2.3. Workflow for Tree-Based Models

One powerful way to use CART models is to begin with a simple (single) CART
model, essentially as a means of exploratory data analysis (EDA). If this tree
indicates clear alternative paths to “habitat” (i.e., branches that invoke different
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and contrasting combinations of predictors), this would suggest that these contin-
gencies are important and, in turn, provide guidance for further analysis. First, this
would argue against using other models that are fit globally and which might not
capture these local contingencies very well. Second, this EDA would lead naturally
to the next step of fitting a boosted tree or a random forest for the actual application.
Here we focus on random forests (boosted trees are described in Supplement S2.2).

The most popular implementation of random forests is probably package random
forest in R (Liaw and Wiener 2002). This software includes many options for fitting
and reporting, and many of these options are set to default values that are reasonable
starting point. See Valavi et al. (2021) for further guidance on fitting random forests
using presence/pseudo-absence data typical of SDM applications.

Beyond the suggestion of using CART for EDA and a random forest for the
application, the workflow proceeds as with a GLM (above): data preparation, model
fitting, and model evaluation.

Model Evaluation

In terms of model evaluation, tree-based models do not yield a P-value nor an
estimate of how much of the variability in the data they explain (i.e., a pseudo-R?).
This is because of the nonparametric algorithm by which classification trees are
constructed.

Note that the dendrogram used to interpret and present a CART model—very
helpful in EDA—is not typically available for a random forest based on perhaps
1000 or more trees.

The systematic exclusion of some of the predictor variables in each of the trees
provides an estimate, by omission, of the relative explanatory power of each
variable, somewhat analogous to the variable jack-knifing approach provided in
maxent (below) and described more generally in Sect. 2.4.2 (above). The relative
importance of each predictor variable can be summarized in either tabular or
graphical form.

Note that a random forest provides a prediction on [0,1], in which “habitat
suitability” is tallied as the proportion of total cases (trees) in which each sample
was predicted to be “habitat.” This output can be further evaluated using post-
processing steps outlined for the GLM in Sect. 2.4 (above). These predictions are
the result of a cross-validation process, so each case is predicted by a model for
which that case was not used.

A.3 Maximum Entropy Models

A relatively recent entry into the SDM toolkit is maxent, a program for habitat
modeling using maximum entropy methods (Phillips et al. 2006, Phillips and Dudik
2008, Phillips et al. 2009, Elith et al. 2011). In Supplement S2.3, we consider
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maximum entropy modeling in three passes: (1) the concept of maximum entropy
and its logical appeal, (2) this logic applied to habitat modeling and the numerical
algorithm of maxent, and (3) the software package maxent (Phillips et al. 2006;
Phillips and Dudik 2008). This model can be confusing because the three perspec-
tives are difficult to separate: maxent is only available in maxent, and the software
includes many features that are not particular to that model itself.

A.3.1 Model Development: Maxent

In the maxent model as implemented in the software package maxent, the typical
approach is to base the model on a set of presences relative to a large set of pseudo-
absences, termed background samples. The software generates the background
points from a user-provided stack of raster maps of the predictor variables. (Alter-
native approaches are described below.)

The statistical task in maximum entropy habitat modeling can be developed in a
relatively straightforward way. It is easy to think of maxent as similar to a GAM
(A.1.1 and Eq. A.1), with the difference being in the function that describes the fitted
model. In a GAM, the function is a smooth nonlinear function based on local
smoothing. In maxent, the function is fitted piecewise from a collection of available
features. The features are shapes: linear, quadradic curves, stepwise thresholds,
hinges, and so on (Fig. 2.12).

The model is fitted iteratively. At each iteration, a single feature of a single
predictor variable is added to the model, with that addition selected to maximize
the overall improvement of the model fit. What is being fitted is the difference
between the distribution of the presences, over all of the predictors, relative to the
distribution of the background samples. The solution is reached using a sophisticated
machine-learning algorithm. In this sense, the algorithm is not very different from a
CART model (above): the fit proceeds via an exhaustive exploration of all incre-
mental improvements to the model.

The translation of the maximum entropy principle to this task is simple: the aim is
to estimate the “loosest” distribution that satisfies the constraint that the expected
value of the fitted distribution is the same as the observed mean over the presences,
for each of the predictors. The “loosest” distribution, in principle, is a uniform
distribution, but the loosest distribution in this implementation is the distribution
of the background of the study area—i.e., that the presences are not different from
the background.

The result of the model fitting is a set of fitted distributions for the predictors,
which collectively estimate the likelihood that a given sample is “habitat.” From this
point forward, interpreting the model would follow the steps outlined (Sect. 2.4 and
following, above) for any SDM. But some of these steps are provided in particular
forms by the maxent software.
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A.3.2 Workflow: Program Maxent

The software package maxent implements the model described above. But it also
provides a wealth of other diagnostic and interpretative aids—none of which is
particularly restricted to maximum entropy models of species distribution. These
extensions are described in more detail in Supplement S2.3 (and in the software
documentation). Some of these affect model inputs, some influence the fitting, and
some are output options—but all are specified before the model is run. Options
include:
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* An option to provide both the presences and background samples (pseudo-
absences) as text files (“samples with data”), instead of using map data. This
option also allows the user to be very deliberate about which areas might qualify
as “background” (though maxent also provides substantial flexibility in this by
permitting masks on the study area). This option makes it easier to compare
maxent results to those of other models or to use actual absences as “background”
samples.

* An option for subsetting separate “training” and “test” subsamples of the data, by
specifying a proportion of the observed cases to withhold for model testing. This
proportion is sampled randomly for the observed cases.

* An option to bootstrap the model by performing a k-fold cross-validation of the
input samples. For example, a tenfold cross-validation would create ten random
partitions of the data, build ten models, test each of the ten withheld partitions in
turn, and return average model performance. In particular, this provides error
estimates (confidence limits) on model output.

» Given the way the model is estimated, it would be easy to overfit the model, and
so there is a method for adjusting the fit to be arbitrarily “tighter” or “looser”: a
tighter fit better matches the data but at greater risk of overfitting; a looser fit is
more conservative and so misses more of the input data but is accordingly less
overfitted and more robust in extrapolation.

» An option to specify the estimated prevalence of the target species. Prevalence is
the proportion of the study area (here, background) that would qualify as “hab-
itat.” This is typically unknown and maxent is calibrated to work best under this
condition; but if an empirical estimate is available, it can be specified. This affects
the likelihood that any sample should be predicted to be “habitat.”

» The relative explanatory power of each predictor is summarized in terms of its
cumulative contribution to the model fit. Program maxent also provides a further
summary, by jack-knifing the predictors in the model. In this, for each predictor
variable, two additional models are estimated: a model with only that predictor
and a second model with every variable except that predictor. A variable that is
important to the focal species will have a large effect by itself. On omission, this
variable will degrade the model only if there are no other predictors in the data set
that are sufficiently correlated that they can substitute for the omitted variable.
This combination of focal models can be quite informative.

* A tuning of the model, based on receiver operating characteristics (ROC) curves.
In this, the aim is to maximize the rate of predicting true positives (known
occurrences) while minimizing the total proportion of the study area (background
samples) predicted to be habitat. Note that because maxent lacks information on
true negatives (“not habitat”), it cannot construct an actual ROC curve; it sub-
stitutes a plausible alternative instead based on the large set of pseudo-absences.
Similarly, this curve is used to estimate area under the ROC curve (AUC) as an
overall index of model performance. The program does not allow a user-specified
tuning but instead offers a few alternatives. (The user also could post-process the
output to tune the model more deliberately, as described in Sect. 2.4.3 above.)
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The tuned and thresholded predictions can then be used to construct a confusion
matrix (Table 2.1, above).

* The software offers a variety of output options (described in the user’s guide). For
applications using geospatial input variables, maxent’s mapped outputs are quite
useful and informative (and voluminous!). It should be emphasized again that
many of these options could be applied to any habitat model—these are features
of the software, not of maximum entropy models. Likewise, these other options in
the software (training vs test subsamples, k-fold cross-validation, jack-knifed
estimates of variable importance, calibration using ROC methods) are generic
in principle and could be applied to any SDM.

A.3.3 Best Practices

Maxent is an increasingly popular species distribution model. While initially avail-
able only in the (free) program maxent, it is now available in many other formats,
including various packages in R; the code itself is now open-source (Phillips et al.
2017) and freely available. There is also a growing user’s community that can
provide technical assistance and general guidance. The software, tutorials, user’s
group access, and other support are available via its website hosted by the American
Museum of Natural History (https://biodiversityinformatics.amnh.org/open_source/
maxent).

A.4 Conclusions

There are many other models available today and more are arriving almost every
day. In this Appendix, we have considered three popular models, to provide a sample
of what is available. These models also underscore that many of these alternatives
can be rather simply substituted: one the model is fitted, the post-processing and
evaluation is remarkably similar. That is, the workflow is rather robust to the choice
of any particular model.

The proliferation of modeling approaches is a good thing, in that it provides many
options to the practitioner. The cost of this is complexity and uncertainty about
which model(s) to choose. This underscores the importance of matching models to
the ecology, to every extent possible (see Sect. 2.5.1) and perhaps ensembling
predictions from multiple models (Sect. 2.5.2). And, of course, attempting to keep
abreast of rapidly developing alternatives and best practices!
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Chapter 3 )
Landscape-Scale Ecological Data S

Abstract Data collected on landscapes tend to be multivariate: the variables covary
and so may be (at best) redundant or (worse) confounding. Ecological data also are
typically spatially structured at various scales. And they are noisy. Ecologists have
devised various methods for dealing with these types of data. Here we begin with an
overview of the kinds of data sets that ecologists often use, focusing on species
abundances and environmental variables measured at the same locations. From these
primary data matrices, we generate secondary matrices that are often used in actual
analyses; correlation or covariance matrices are familiar examples, along with
sample x sample distance or dissimilarity matrices. The chapter also illustrates a
variety of exploratory data analyses: relationships among species, among environ-
mental variables, and between species and environmental variables. The results of
exploratory data analyses will, in turn, inform all subsequent analyses. We explore
three general approaches to ecological analyses in the next three chapters.

3.1 Introduction

We began the tasks of landscape analysis and management by looking at species
distribution modeling (SDM). This was because this task is fundamental to our larger
agenda, but it also motivates much of this book by raising several issues that are
common to many ecological analyses. In this chapter, we begin to lay a foundation
for the analysis of landscape-scale data, by revisiting some issues discovered in
species distribution modeling and setting the stage for the next few chapters.

Ecological data tend to be high-dimensional or multivariate: when we sample, we
measure many things (e.g., many species, many environmental variables, etc.).
These measurements tend to be correlated among themselves, which can complicate
inferences we would like to draw from them (recall inferences about variable
importance in regression-based SDMs in Chap. 2, Sect. 2.4.2). And most measure-
ments will be spatially structured (autocorrelated)—a complication we simply side-
stepped in SDMs (but see Sect. 2S.1.3 in the Supplement to Chap. 2). We will get to
these issues in subsequent chapters, but we begin with an overview of typical
ecological data sets and their characteristics.
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This chapter is not so much a task itself but rather a set of considerations and
exploratory analyses that rightly should precede any analytic tasks conducted at the
landscape scale. We begin by considering some generalities about ecological data
and introduce useful approaches to exploratory data analysis and data screening, data
transformations, and data preprocessing in preparation for further analyses covered
in subsequent chapters.

3.2 Ecological Data Matrices

Landscape ecologists often work with data sets of a characteristic structure. Typi-
cally, these data comprise measurements of a set of variables as observed at a
number of locations. Often, these data consist of measures of species abundances
(or presence/absence) for a number of sample locations (points or quadrats). For our
purposes, these data will be referred to as a species data matrix. There might also be
an additional data set consisting of other environmental variables measured at the
same locations. For example, in addition to species abundances, we might measure
soil characteristics, topographic descriptors, and so on. We will refer to these as the
environmental data matrix. In landscape ecology, we often also tally the locations of
the samples, in terms of latitude and longitude or other spatial coordinates. There are
other ecological data sets, of course. Life-history traits mediate the responses of
species to environment, and genetic data (as genetic markers) mediate the expression
of traits in species. All of these data sets, when analyzed in their native form will be
referred to as primary data matrices.

For purposes of analysis, a primary data matrix might be processed further into
another format, in ways that are specific to particular analyses. These reworked data
sets will be referred to as secondary matrices. A correlation matrix derived from a
primary matrix of environmental variables is a familiar example. Here we consider
some basic attributes of these data matrices.

3.2.1 The Primary Data Matrix

A primary data matrix might be reworked only slightly from the format in which the
data were actually collected in the field. For example, in the field, one might tally the
abundance of various plant species in a sample quadrat, with the resulting field form
readily converted into a primary data matrix of n rows (sample quadrats) and
m columns (species) (Table 3.1).

Of course, the same data could be coded as the transpose of this matrix, in which
the rows would be species and the columns, samples. The two matrices are equiv-
alent, and the choice of whether to code the data as shown above or as its transpose is
largely a matter of coding convenience—depending on how the data were tallied in
the field. It is a trivial matter to transpose either matrix as necessary. Often, in the
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Table 3.1 An example of a primary data matrix of species on sample quadrats
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Spp 1 Spp 2 Spp 3 Spp m
Sample 1 0 16 30 42
Sample 2 2 8 11 34
Sample 3 8 0 15 9

X
Sample n 0 11 23 28

field species are tallied only when present on a sample, and so constructing the full
species matrix entails inserting the zeros that correspond to absences (which typi-
cally far out-number the presences).

We will refer to this primary data set in matrix notation, for example, X. By
common convention: a bold-faced, capitalized letter (X) is a matrix. A bold lower-
case letter (x) is a vector (a column of elements; its transpose x’ is a row vector). An
italicized lowercase letter (x) is a scalar variable. Element x;; of X corresponds to row
i and column j of that matrix.

3.2.2 Ancillary Data Matrices

In many applications, we will analyze more than one primary data matrix at the same
time. In particular, we often will be interested in how the variables in X (species) are
related to those in Y (environment). In landscape ecology, the ancillary variables
often include location (i.e., geographic coordinates), which allows the special cases
of asking how species abundances or environmental variables vary according to
location or proximity (distance apart), and which broaches a whole new realm of
ecological questions and statistical inference. Indeed, much of Chap. 6 is concerned
with inferences about the relationships among species, environment, and location.

Ancillary data matrices must take the same form and have the same number of
rows as the focal primary matrix, although the number of ancillary variables need not
match. Thus, if the primary species matrix has n rows and m columns, then the
ancillary (environmental) matrix must be n x p (read "n by p") for p variables
matched by sample locations. Likewise, if the primary matrix is coded m x n the
ancillary matrix must be p x n.

There are other possibilities for ecological data matrices, of course. These include
trait data (species x trait), genetic markers (individual x marker), and so on. An
important task in data analyses is to reconcile the sample units and dimensions of
these data matrices. For example, we expect species to sort along environmental
gradients based on their life-history traits (e.g., shade tolerance, drought tolerance,
nutrient requirements) or behaviors. These traits are “packaged” only as species
(they cannot be separated from the species that carry them), and so inferences about
gradient response are made at the species level or in terms of the interaction between
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environmental variables, species, and traits (the so-called fourth-corner problem,
because the inference of interest is in an unmeasured “corner” defined by the other
three matrices, Dray and Legendre 2008). Similarly, inferences about genetic influ-
ences on species distributions depend on genetic markers extracted from individuals,
of particular species, and which are tallied at specific locations.

3.2.3 Data Transformations

The primary matrix is often transformed before further analysis. The goal of data
transformations is, in general, to reduce numerical problems associated with eco-
logical data. For example, data are frequently transformed so that their distribution
more closely meets the assumptions of normality typical of many parametric ana-
lyses. But ecological data have quirks beyond distributional issues. Some of these
problems include the preponderance of zeros in the species matrix (i.e., most species
do not occur in most samples), the fact that species abundances often vary over
orders of magnitude (effectively trivializing rare species in many analyses), and so
on. While we will consider some common data transformations in conjunction with
specific analyses, it is worth anticipating that transformations can have a profound
effect on subsequent analyses.

For example, one common transformation of species-compositional data relativ-
izes species values by the maximum value recorded for that species on any sample
(i.e., relativizing by column maximum). This effectively treats all species equitably:
all species values vary on [0,1] (or [0,100] percent). This means that abundant
species do not dominate the analysis; rare species are allowed to contribute equally.
Another common data transformation relativizes all elements x;; by their respective
row (sample) totals, yielding proportions (or percentages, if multiplied by 100) as
new data elements. If this is done for vegetation samples, any subsequent analysis
would emphasize the relative composition of the samples as their main feature; the
analysis would be blind to gross differences among samples in terms of their actual
biomass or stature. The Wisconsin double relativization (Bray and Curtis 1957),
popular with many plant ecologists, first relativizes by column maximum, then by
row sum, to yield values that are proportions of relative abundances.

Another common transformation for species abundance is to take the logarithm to
compress a huge natural range of abundance values. This might use log,, natural log
In, or log( depending on the range of abundance values. (By convention, we would
add an appropriately tiny number to each 0 in the data matrix, to avoid taking the log
of 0.) While untransformed data would produce results highly biased by the dom-
inant species, log-transformed data down-weight abundant species so they do not
overwhelm the influence of less common species. This has the same aim but it less
extreme than relativizing species data. The extreme case would be to convert all
species abundances to presence/absence (1/0).

For example, consider the (fake) species data in Table 3.2. In terms of abun-
dances, species B outweighs the others, and unless the data are relativized (i.e., by
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Table 3.2 An example of species data and the implications of relativizing or not

Spp A B C D E Total
Smp 1 1 200 5 0 0 206
2 2 400 10 0 0 412
3 0 1 0 10 5 16
4 0 2 0 20 10 32
Max 2 400 10 20 10

column maximum), this species will dominate numerical analyses while species
A would have very little influence. Samples 1 and 2 are identical in relative
composition but sample 2 has twice the overall abundances. Samples 3 and 4 are
also the same, relatively, but they differ in absolute abundance from each other and
from samples 1 and 2.

Importantly, there is no right and wrong approach here: Various transformations
might make sense for particular applications. But decisions about data transforma-
tions cannot be made lightly, as they affect both the numerical results of an analysis
and its ecological interpretation.

Issues about data transformations also apply to ancillary data, particularly if these
variables are in different measurement units. For example, ancillary environmental
variables might include elevation (m), soil pH (log of H ion concentration), percent
clay in the B soil horizon, and exchangeable cations in peqgs. If these variables are to
be used separately, transformation might not be an issue. If they are to be combined
in an analysis, then they must be transformed into consistent units. Converting all
variables to percentages (relative to the maximum for each variable) or standardizing
to z-scores are common approaches to reconciling disparate measurement units.
Converting to commensurate units, of course, still invites further transformations
to deal with distributional issues (normality, skewness).

3.2.4 Secondary Data Matrices

There are two ways in which a primary data matrix can be processed for subsequent
analyses. One approach focuses on relationships among the variables (e.g., species
or environmental factors), while the alternative approach focuses on relationships
among the samples. Many multivariate methods proceed from either one or the other
of these secondary matrices. It should be clear that these two modes of analysis are
complementary approaches to looking at the same data. Because relationships
among variables are often indexed as correlation coefficients (elements r of matrix
R), approaches that emphasize patterns among variables are sometimes termed
R-mode analyses. By comparison, approaches that emphasize relationships among
samples (quadrats) are termed Q-mode. Legendre and Legendre (2012, Chapter 7)
discuss additional variations on these approaches, including cases where the data
include repeated measures (i.e., samples x variables x time).
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3.24.1 Relationships Among Variables

While relationships among variables are often summarized in terms of correlations,
these are not the only approaches. Here we consider a few options.

Covariance and Correlation Matrices A familiar processing of a primary data
matrix X is to summarize it in terms of associations among the measured variables.
A common form of this is the variance-covariance matrix C. The matrix C is
computed from a few basic calculations on the primary data matrix. Recall that the
mean for any column j of the n x p matrix above is:

_ I
xj:ﬁZx,j (31)
i=1

for variable x; measured over n samples. Similarly, the sample variance for the jth
variable is:

szz (ni 1) zn: (xij—)_cj)z (32)

i=1

and the covariance between two columns j and k is:

Cjk= (l’l—il) Z (x,-j —fj) ()C,'k —fk). (33)

=1

The variance-covariance matrix C, known as the sum-of-squares and cross-
products (SSCP) matrix before division by (n — 1), is a p X p matrix in which the
elements along the diagonal are the sample variances for each variable and the
off-diagonal elements are covariances between pairs of variables (Table 3.3).

This matrix is often further transformed by dividing the elements by their
respective pooled variances:

Table 3.3 An example of a covariance matrix C

Var 1 Var 2 Var 3 Var p
Var 1 512 Cio c13 Cip
Var 2 Co1 52 Ca3 Cop
Var 3 C31 C32 832 C3p

Cik sz -
Var p Coml Coo Cm3 s,,2
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Table 3.4 A tally matrix from which to derive indices of species association

Species association Species B Row totals
Present Absent
Species Present a b m=a+b
A Absent c d n=c+d
Column totals r=a+c s=b+d N=m+n
_ Sk
ij = SJ_Sk (34)

yielding a correlation matrix R. In this, the diagonals are all 1.0 and the off-diagonals
rjk are product-moment correlations on [—1,1]. Note that if the original variables
have different measurement units, the matrix C might be dominated by the variable
(s) with the largest values based on their measurement units rather than the greatest
inherent variability; using the standardized matrix R treats all variables equitably.

Principal components analysis (PCA) and factor analysis (FA), two very common
multivariate techniques (see Chap. 4), proceed from the secondary matrices C or R.
Note that the correlations are linear, and so PCA and FA are linear models. These are
especially common in analyzing environmental variables, less so for species abun-
dances because the pairwise relationships among species are often not linear (and see
below).

Indices of Association Among Species There is, of course, no reason why the
association among species (or other variables) needs to be described by covariance
or correlation. There are other indices of association that might be more appropriate
for certain applications. In particular, for primary data matrices where the variables
are species, it might be appropriate to summarize species associations in terms of
their tendency to co-occur on the same sites (or conversely, to not occur on the same
sites). There are dozens of indices of interspecific association (Ludwig and Reynolds
1988). Most are based on various combinations of basic tallies of presence/absence
from the primary data matrix (Table 3.4). To be clear, these are tallies for pairs of
species A and B as they occur over all samples.

From the tallies a, b, c, and d, a wide variety of association indices have been
devised. For example, the Jaccard Index summarizes the proportion of samples
where two species co-occur relative to the proportion of samples where at least
one species occurs:

J= m. (3.5)

Many statistical ecology textbooks review a variety of association indices (e.g.,
Ludwig and Reynolds 1988; McCune and Grace 2002; Legendre and Legendre
2012). Much of the proliferation of these indices stems from a concern among
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ecologists as to the meaning of joint occurrences as compared to joint absences.
Clearly, two species occurring together on a site implies that they share something
ecologically; perhaps they have similar environmental tolerances or niches. Con-
versely, their not occurring on the same site does not imply the same level of
information. We cannot know why a species does not occur on a site, and conse-
quently, we cannot assume that its absence tells us anything with confidence. To
anticipate, this nebulous meaning of joint absences will arise as a complication in a
number of analyses. Computationally, a common response to this issue is simply to
ignore joint absences (note that term d is not included in Eq. 3.5).

Given an appropriate index of species association, a secondary matrix can be
constructed in a manner analogous to matrix C or R (above): an m X m matrix
A summarizing the pairwise associations among all m species in the primary matrix.

3.2.4.2 Relationships Among Samples: Distance Matrices

An alternative approach to summarizing the primary data matrix in terms of
the variables is to focus on the relationships among the samples. In this, we describe
the correspondence among pairs of samples in much the same way we produced the
covariance matrix C, correlation matrix R, or association matrix A (above)—except
that we now focus on rows instead of columns in the primary data matrix.

There are two complementary ways of summarizing relationships among pairs of
samples, by focusing on their similarities or, reciprocally, their differences. In
general, the former approach gives rise to a resemblance or similarity matrix while
the latter yields a dissimilarity or distance matrix. A similarity index is typically the
additive inverse or complement of a distance index, and so the approaches are
equivalent (with some exceptions that we revisit later).

One familiar measure of ecological distance is simply the multivariate form of the
familiar Euclidean distance metric:

for all variables p on the two samples i and j. This procedure, conducted for all pairs
of samples, produces an n x n matrix D summarizing the pairwise ecological
distances between samples. (Note here that the subscripts i and j still index rows
and columns of the primary matrix, but that both items now refer to samples in the
secondary matrix.)

For a data set with many correlated variables, Euclidean distances overestimate
distances. One way to address this is to compute Mahalanobis distances, which are
essentially Euclidean distances corrected for the covariance among variables (Goslee
and Urban 2007).
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One common instance of a distance matrix is actual distances: pairwise distances
(typically Euclidean) between samples based on their geographic coordinates. Geo-
graphic distance matrices will feature prominently in Chap. 6.

For species data, there are various similarity indices that are analogous to the
species association indices described above. For example, there is a Jaccard analog
of Eq. (3.5) computed between samples i and j, with the presence/absence tallies
comparing two samples as summed over all species (i.e., essentially the same index
but on the transpose of the primary data matrix). Computed this way, Jaccard’s
sample similarity indexes the proportion of species presences that are shared in
common by two samples. This version of Jaccard’s index is sometimes called the
coefficient of community.

Similarly, the familiar Bray-Curtis (aka Sorenson’s) index of sample similarity is:

SzZﬁ (3.7)

where W is the number of species shared in common and A and B are the numbers of
species on each of the two samples. This index compares the shared species to the
average richness of the two samples. Subtracting this from 1.0 converts it to a
dissimilarity index.

A more quantitatively sensitive index that considers actual abundances rather
than presence/absence is the Bray-Curtis (1957) dissimilarity index, also known as
percent difference:

M=

e — 5
= (3.8)
(v + 5i)

~
Il

PD=

NE

~
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—_

An analogous coefficient computed as percent similarity uses the minimum value
of x;; or x;; as the numerator of Eq. (3.8), which emphasizes shared abundances. Both
are very commonly used in community analysis (see Chaps. 4, 5, and 6).

Indices such as the Bray-Curtis forms are often computed from data that have
been transformed, e.g., relativized by column maximum, row sum, or both. While
any of these transformations can be justifiable on ecological grounds, it is worth
emphasizing again that they will likely yield different results from the same subse-
quent analysis.

As was the case with species association indices, there is a huge variety of
distance (or similarity) indices used by ecologists (Legendre and Legendre 2012
review more than two dozen indices). The indices tend to vary according to a number
of numerical issues that plague ecological interpretation (e.g., the joint-absences
issue). Beyond this, there is some concern over whether the distance measure is
metric. A metric distance measure satisfies the geometric condition that, for three
samples a, b, and c:
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Fig. 3.1 A case where species (colors) sort along a long environmental gradient. Samples 1 and
2 share species and so have a distance d;, < 1.0. Distances d;; and d,, are both 1.0, though sample
4 is ecologically farther from 1 than sample 3 is. One solution is to extend d;, as the sum of d;5, d>3,
and d34

dac < (dah + dhc)~ (39)

A metric index also satisfies three additional properties: that if a = b, then
d,, = 0;if a £ b, then d,, > 0; and d,, = d,,, Semi-metric or nonmetric indices
fail to meet one or more of these conditions. A metric may also satisfy the more
stringent condition and be strictly Euclidean (i.e., replacing “less than or equal to”
with “equals” in Eq. 3.9). Whether an index is metric has implications in ordination
studies because only metric indices can be mapped directly into a Euclidean ordi-
nation space (and, by extension, simply drawn on a physical page); we return to this
in Chap. 4.

One issue that can confound distance measures is saturation of the index. That is,
once two samples share no species in common, their distance is 1.0 and cannot
reflect any further ecological dissimilarities. This is often an issue with samples
collected over long environmental gradients, i.e., systems with high beta-diversity.
One solution to this problem is to estimate long distances (d > 1.0) as the sum of
distances between pairs of samples that are closer together (d < 1.0). These are
termed extended distances, and they are typically estimated as the shortest stepping-
stone path between two samples that have d = 1.0, using as stepping-stones only
samples for which the distances are <1.0 (Bradfield and Kenkel 1987; De’ Ath 1999)
(Fig. 3.1).We will revisit some of these indices as we turn to ordination methods,
some popular versions of which proceed from distance matrices. Principal coordi-
nates analysis and nonmetric multidimensional scaling (Chap. 4) proceed from a
sample x sample distance or dissimilarity matrix. Distance matrices are also used in
some popular classification techniques (Chap. 5) and in Mantel tests (Chap. 6).
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Fig. 3.2 Workflow for exploratory data analysis (EDA) for among species (SPP), among environ-
mental (ENV), and between species and environmental variables. Details, of course, depend on the
particular data sets

3.3 Exploratory Data Analysis

An important part of any analysis of ecological data is to preview the data in a very
simple and straightforward fashion, by looking at it. There are a number of ways to
display data, and these “looks” convey several different perspectives on the data.
These preliminary inspections should then inform subsequent analyses.

As noted, the primary data sets in many ecological studies are matrices of species
and environmental variables measured over the same samples. Preliminary inspec-
tion would focus on each of these matrices separately, as well as any relationships
between the matrices, that is, among species, among environmental variables, and
between species and environmental variables (Fig. 3.2).

The following illustrations are examples of methods for the preliminary inspec-
tion of these data sets. The data are measures of abundance of forest trees and
environmental factors, collected in Sequoia National Park in the Sierra Nevada of
California, USA (Urban et al. 2002). The data sets include species abundances,
environmental factors (see below), and geographic coordinates (UTM easting and
northing, m). The 99 samples were distributed in clusters of 3—4 quadrats (each
20 x 20 m), with the clusters distributed over a long elevation gradient (recall
sampling designs in Chap. 1, Sect. 1.3.3 and Fig. 1.7) (Fig. 3.3). We will return to
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Fig. 3.3 Distribution of 99 samples in clusters distributed over an elevation gradient in Sequoia
National Park, California (USA). The inset map is a digital elevation model, ranging from ~800
(red: warm and dry) to ~3300 m (blue/violet, cool and wet). The pattern of samples roughly follows
roads and trails. Vegetation map courtesy Sequoia-Kings Canyon National Park. (Reproduced with
permission from Urban (2023); permission conveyed via Copyright Clearance Center, Inc.)

the spatial structure in Chap. 6; here we focus on the species and environmental
variables.

3.3.1 Inspection of Species Data

The species data set has 17 tree species, each tallied in terms of basal area (the
summed cross-sectional area of all trees per species, in m?ha~') (Table 3.5). There
are a number of useful and informative methods for visually inspecting species data.
In particular, a variety of graphical approaches focus on relative species abundances.

One useful summary is the familiar dominance-diversity curve in which species
abundance is plotted against rank species sequence (i.e., species ranked in order of
decreasing abundance) (Fig. 3.4). Such curves often show a steeply decreasing initial
slope, indicating that much of the importance is attributable to a very few species.
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Table 3.5 Tree species sampled in the Sierran data set
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Code Scientific name Common name
ABco Abies concolor White fir

ABma Abies magnifica Red fir

ACma* Acer macrophyllum Bigleaf maple
ARvi* Arctostaphylos viscida Whiteleaf manzanita
CAde Calocedrus decurrens Incense cedar
CEin* Ceanothus integerrimus Deer brush

COnu Cornus nuttallii Pacific dogwood
Plco Pinus contorta Lodgepole pine

Plje Pinus jeffreyi Jeffrey pine

Plla Pinus lambertiana Sugar pine

PImo Pinus monticola Western white pine
PIpo Pinus ponderosa Ponderosa pine
QUch* Quercus chrysolepis Canyon live oak
QUke Quercus kelloggii California black oak
SEgi Sequoiadendron giganteum Giant sequoia
TOca* Torreya californica California torreya
UMca* Umbellularia californica California bay

Six uncommon species (frequency <0.05) were deleted (tagged *)

30
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® .PIpOQUk
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[ I
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Species Rank

Fig. 3.4 Dominance-diversity curve for 17 tree species sampled in Sequoia National Park in
California (data from Urban et al., 2002). Species are ordered on the abscissa according to their
relative basal area (see species codes in Table 3.5)
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Fig. 3.5 Plot of species in diagnostic space defined by frequency (% of samples on which the
species occurred) and dominance (as basal area), for tree species in Sequoia National Park. (Data
from Urban et al. 2002; species codes in Table 3.5)

More importantly, the long flat tail of this curve confirms that most species are
uncommon or rare. The presence of a large number of rare species in the data set
might be interesting ecologically, but it can degrade multivariate techniques that are
plagued by the prevalence of zeros in the matrix. Indeed, one frustration in ecolog-
ical analysis is that species that are compelling for conservation purposes precisely
because they are rare are also hard to analyze for that same reason.

There is no strict rule for dealing with uncommon species, but a common
response is to delete species that occur in fewer than 5% of the samples. In the
Sierran data set, this removes six species—the last six in the flat tail of the
dominance-diversity curve.

Another useful summary entails plotting species positions in a two-space defined
by frequency (percent of samples occupied) and some measure of abundance (e.g.,
basal area, percent cover, density—but be aware that these measures might produce
different results). The resulting graph (Fig. 3.5) highlights species that are wide-
spread versus locally distributed, and rare versus abundant (for trees, reflecting their
density and stature). Beyond offering a concise visual summary of community
structure, the graph also can indicate species that might bias subsequent multivariate
analyses. For example, a species that is widespread and abundant will dominate
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Fig. 3.6 A plot of the abundances (m*ha™" basal area) of two common species in the Sierran data
set, red and white fir, emphasizing their nonlinear relationship

nearly any multivariate analysis; if that species is similarly abundant everywhere, it
is not very interesting ecologically. By contrast, a large number of species that are
quite locally distributed and also rare will confound some techniques, primarily
because these columns of the primary data matrix will contain mostly zeros; in the
limit, very rare species are merely noise. Ideally, species that occur with moderate
frequency (few zeros) but variable abundance would be handled best by most
multivariate techniques.

Of the two graphs, the plot of relative abundance versus frequency would seem to
provide more information, as it separates “‘commonness” into two components. For
example, giant sequoias (SEgi in Fig. 3.5) are rather uncommon in the data set (low
frequency) but are enormous where they do occur (high basal area). Again, the
species in the lower left corner of this figure are rare and small; these were deleted for
subsequent analyses.

We touched on the issue of linear versus nonlinear relationships among variables
when we considered indices of species association (Sect. 3.2.4). It is worth empha-
sizing this here, by showing the pairwise relationship between two tree species in the
Sierran data set (Fig. 3.6). If the two species replaced each other in a zero-sum sense,
we might expect one to increase when the other decreases, and vice versa. This
would yield a negative and perhaps nearly linear relationship between the two
species. But the reality is that most species do not occur in most places, so that
many of the samples have neither species (the crowd of points in the lower-left
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Fig. 3.7 Species abundances mapped into the study area in Sequoia National Park, CA. Symbol
sizes are proportional to relative basal area per species (see species codes in Table 3.5)

corner of the figure). This yields a strongly nonlinear relationship between the
species. Extended to three or more species, the distribution shows “spikes” for
each common species on its own axis, with an accumulation of samples in the
lower corner, near the origin. McCune and Grace (2002) refer to this as a “dust
bunny” distribution (samples accumulate in the lower corner), and it underscores
why linear models are often not a good fit for species data.

Finally, it is always useful to examine a plot of species occurrences or abundances
in geographic space, a map. With species abundances, one way to display this is with
a color bubble plot, in which symbols are colored by species and sized proportional
to abundances (Fig. 3.7).

3.3.2 Preview of Environmental Patterns

The environmental data set for the Sierran case study has 23 variables, including a
variety of topographic and soil factors (Table 3.6).
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Table 3.6 Environmental variables used in the Sierran case study

Variable Description Note

Elevation Elevation (m) From GPS, DEM
Slope Maximum slope (°) In field

TAspect Transformed aspect1 —1 x COS(45-aspect)
TSI Terrain shape index? <1: dome; >1: cove
xDepth Mean soil depth (cm) To maximum of 100 cm
sDepth Standard deviation of depth From 30 measurements
pH pH

C Soil carbon (%) Total carbon

N Nitrogen (%) Total nitrogen

C:N Carbon:nitrogen ratio

P Phosphorus (pg/g) Total exchangeable
Ca Calcium (cmol(+)/kg)

Mg Magnesium (cmol(+)/kg)

K Potassium (cmol(+)/kg)

Ac Acidity (cmol(+)/kg) Total exchangeable
ECEC Cation exchange capacity 2(Ca, Mg, K, Ac)

BS Base saturation (%) 2(Ca, Mg, K)/ECEC
xLitter Mean litter depth (cm) Depth to mineral soil
Clay Clay (%) Particles <2 pm

Silt Silt (%) 3 Particles 2-50 pm
Sand Sand (%) Particles >50 pm

Described more fully in Urban et al. (2002)

Preliminary inspection of relationships among environmental variables can be
conducted through simple correlation. A correlation matrix highlights pairs of vari-
ables that are either positively or negatively associated and so provides an obvious
foundation for subsequent analyses via principal components or factor analysis—
techniques based on covariance analysis.

One caveat to bear in mind, however, is that correlation analysis is linear and so
cannot reflect accurately any relationships that are nonlinear. The safest way to guard
against misinterpreting nonlinear relationships is to simply graph variables against
one another in a pairwise fashion (Fig. 3.8). Several commercial statistics packages
have graphical utilities to produce pages of “thumbnail” graphics that, while tiny, are
more than adequate for preliminary data inspection. Manly (2004) refers to these
plots as a draftsman’s display of the data; they are also known as pairs plots.

3.3.2.1 Outliers

Graphical displays provide an easy means of identifying unusual samples (outliers)
in data sets, whether these are species or environmental variables. As in any
statistical analysis, outliers can bias or confound results by lending undue influence



98 3 Landscape-Scale Ecological Data

40 5.5
gL
'$ 2% ° o | S
Elevation K e ° : &
o dq L o 8
v
LD.E“'. H e
0 _| o p C
e ] .*‘3 \3‘00.
< . -
-. LJ :S
P’ & C o
o o«
[} L
O d
o
™ ] e
83!3‘8: 1 1
:.o. :O
... - O
® |
@ - o
%
0 a8
~ ... o
8 o &
[ L] L ] :w
b el . -
TTT TTTTTT
1500 2500 2 6 10 0 4 8

Fig. 3.8 Draftsman’s display (pairs plot) of a set of environmental factors measured in Sequoia
National Park (see variable codes in Table 3.6)

to the statistical estimate or fit. Most would agree that extreme outliers should be
removed from the data sets before further analysis.

In other instances, numerical approaches to finding outliers are easier to use. For
example, one might compute summary statistics on the raw data or a secondary
matrix and look for samples that are much more than three standard deviations
beyond the pooled sample mean. (Be aware that the inclusion of outliers in the data
might confound the estimate of the standard deviation.)

3.3.2.2 Collinearity

Sometimes variables are so highly correlated that they are essentially duplicate
versions of the same variable. Collinearity is a vexing problem in statistical analyses
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because it confounds the interpretation of individual variables—as we discovered in
fitting habitat models as multiple regressions in Chap. 2 (Sect. 2.4.2). In analyses that
combine variables into synthetic new variates, such as principal components analysis
(Chap. 4), the inclusion of collinear variables inflates the relative importance of the
synthetic variate by loading it with arbitrarily redundant information.

One solution to that issue, in part, is to screen variables so that none are correlated
too strongly. Dormann et al. (2013) suggested 10.70l as a cutoff value for correla-
tions. This is a practical recommendation based on empirical trials (not statistical
theory). Equivalently, some analysts use variance inflation factors (VIFs) as a means
to screen redundant variables. VIFs are often computed in post-processing a regres-
sion analysis, a procedure outlined by Legendre and Legendre (2012, their
Chapter 10). An alternative approach that can be done in preprocessing or explor-
atory data analysis is based on the inverse of the correlation matrix R. The inverse of
a matrix (X~") is such that X matrix-multiplied by X! yields the identity matrix
I (a diagonal matrix with 1’s in the diagonal and 0’s elsewhere). In this instance, the
diagonal of the inverse matrix R™" provides the VIFs from the correlation matrix
(Legendre and Legendre 2012). As with correlations themselves, there is not a
formal rule about how large is too large for a VIF; but general guidance would be
to remove variables with VIFs much larger than 5-10.

As a rule, collinear variables should be edited from a primary data matrix. While
there is no strict guidance on this, if two variables are redundant, one of the pairs
should be removed. As practical guidance, one might adopt a few decision rules
for this:

1. Of a collinear pair, choose to retain the variable with the fewest or lowest
correlations with other variables.

2. In a multiple regression model, retain the variable with the most readily
interpreted (in a narrative sense) relationship to the dependent variable (and see
below).

3. For variables that are devised as alternative measures of essentially the same
thing, choose the one that has the highest univariate correlation with the depen-
dent variable or the strongest correlation with synthetic variates in exploratory
analyses. This last case would include variables measured at alternative scales—
common in landscape ecology.

Collinearity can also arise in sets of variables that are mutually redundant. For
example, soil texture is typically reported in terms of sand, silt, and clay fractions—
which fractions sum to 100%. That is, one of the variables is a linear combination of
the others. Thus, the three variables are collinear even if none of the pairwise
correlations is quite strong; only two of the three need to be used.

In the Sierra case, many variables were strongly correlated and several redundant
variables were removed. This resulted in a set of 13 environmental variables over
99 samples.
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3.3.3 Species-Environment Relationships

Many of the same approaches outlined above can be applied to relationships between
species abundances and environmental variables. Simple correlations between spe-
cies and environment can provide a quick look at these relationships. Of course,
there is the concern that species responses to environmental variables might not be
linear; indeed, much of the work in plant community ecology explicitly assumes that
these relationships are nonlinear (ter Braak and Prentice 1988, Austin and Smith
1989).

Species distributional data from the Sierra Nevada illustrate this point quite
nicely. Simple correlation shows that four common species are each correlated,
though weakly, with elevation (Table 3.7).

But, as a graph more clearly shows, the species sort out rather nicely along an
elevation gradient (Fig. 3.9). Importantly, in this case, a linear model of species
response would be an inappropriate choice for a descriptive model, and, similarly, a
multivariate analysis based on linear relationships would be misleading if not
completely confounded. The issue of linear as compared to nonlinear also depends,
in part, on the length of the gradient: even if species response is nonlinear, over a
short gradient, a linear model might fit (we will revisit this in Chap. 4.)

Table 3.7 Linear correlations between elevation (m) and basal area (m? ha™"') in Sequoia National
Park in California (species names in Table 3.5)

Ponderosa pine White fir Red fir Western white pine
Elevation —0.273 —0.412 0.486 0.526
100 — White fir Red fir Western
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Fig. 3.9 Distribution of four common species in Sequoia National Park, with respect to elevation
(m), illustrating the nonlinear trends that compromise many multivariate methods (data are the same
as in Table 3.7; symbols are sized proportional to abundance)
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The growing availability of user-friendly software packages makes it easy to
simply “point and click” to conduct increasingly sophisticated multivariate analyses.
Unfortunately, this also makes it increasingly tempting to skip the preliminary work
and to dive right into the fun stuff. Remember, time spent in preliminaries will be
repaid many times over in time saved interpreting subsequent, more complicated
analyses. Take time to look at the data!

3.4 Reporting

In technical writing, data are typically described as a subsection of a Methods
section, before the detailed description of the Analyses. The Data description should
include details on the primary data set(s), any editing or transformation of the
original data, and any insights from exploratory data analysis that would inform or
constrain subsequent analyses.

Summary description of the rows and columns (names, units, codes; probably in
tables)

Sample sizes (rows and columns, species and environmental factors)

Any editing of the rows or columns (e.g., removing redundant/collinear environ-
mental variables, uncommon species, or removing outlier samples)

Any relativizations or other transformations of the original data, with an expla-
nation of why these were done

Insights from EDA that would influence subsequent analyses, including which
analyses might be used or how the analyses would be conducted (these would be
detailed separately)

We will revisit some of these details as we delve into subsequent analyses in the
next few chapters.

3.5 Further Reading

Any text on multivariate analysis in ecology will include some preliminary discus-
sion of the nature of ecological data in an introductory chapter. Among the more
focused for ecologists are McCune and Grace (2002), Legendre and Legendre
(2012), and Dale and Fortin (2014). Other (sometimes older) texts are still useful
(e.g., Gauch 1982; Pielou 1984; Digby and Kempton 1987; Ludwig and Reynolds
1988; Tabachnick and Fidell 1996; Manly 2004). The first chapters of these books
are the right entry points in most cases.

For those who are not comfortable with the notation and terminology of matrices,
both Manly (2004) and Legendre and Legendre (2012) include overviews of matrix
algebra in their second chapters; McCune and Grace (2002) lead with this in their
first chapter, while Digby and Kempton (1987) include this material as an appendix.
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Most of these texts include some discussion of data transformations and the calcu-
lation of secondary data matrices. Legendre and Legendre (2012, Chapter 7) is
especially thorough.

A number of basic texts include chapters dedicated to data preview, inspection, or
visualization: Digby and Kempton (1987, their Chapter 2), Tabachnick and Fidell
(1996, Chapter 3), McCune and Grace (2002, Chapter 2), and Manly (2004,
Chapter 3).

Beyond this, the utilities for data inspection are somewhat software-specific. R
(R Core Team 2022) takes some pride in its graphics and exploratory procedures,
and many of the illustrations in this chapter were produced in R. Borcard et al.
(2011) use R to cover many topics in EDA (their Chapter 2) and secondary data
matrices (their Chapter 3). Plant (2012) covers EDA for spatial data in Chap. 6.

But nearly any statistics or graphics package can provide the basic tools for this
crucial part of multivariate analysis. For general insights and recommendations for
the graphing and display of scientific data, see the classics such as Cleveland (1985,
1993) or Tufte (1983, 1990).

3.6 Summary and Prospectus

Ecological data sets include tallies of species, environmental factors, and other
variables measured over samples that are typically also indexed by location. These
data sets have characteristic features that can have profound influences on numerical
analyses. For species data, a preponderance of zeroes (absences) and nonlinear
relationships among species or between species and environmental factors can
confound many analyses. With environmental factors, natural correlations lead to
redundancies or collinear relationships that can be similarly vexing in multivariate
analyses.

Ecologists have devised approaches to deal with these problematic issues with
their data. These include rule-of-thumb guidance on removing uncommon species or
redundant variables and approaches for relativizing or transforming variables prior
to other analyses.

Exploratory data analyses (EDA) can be hugely informative in identifying prob-
lematic data issues so they can be dealt with appropriately and to reveal patterns in
the data that might inform the choice of techniques in subsequent analyses. In the
next few chapters, we will use the results of EDA as a point of entry into more
focused analyses.
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Chapter 4 )
Ordination Chack or

Abstract Ordination refers to a collection of tools for summarizing continuous
trends in multivariate data sets. These are venerable tools that have informed
community ecology for many decades and which are now being adopted more
generally in “big data” applications. There are three general lineages, corresponding
to underlying assumptions about the data (e.g., linear versus nonlinear models). The
focus here is on indirect ordinations as tools for summarizing and communicating
trends in species or environmental data sets, an application that would arise naturally
from an inventory and monitoring program. The workflow for ordination is illus-
trated using principal components analysis with environmental variables and, in
parallel, nonmetric multidimensional scaling with species abundance data. In both
illustrations, the process flows from exploratory data analysis to generating the
ordination, to post-processing the ordination for interpretation and reporting. In the
following chapter, we develop the complementary application of classifying discrete
groups in data sets. We return to ordination in Chap. 10, where it provides a
framework for ecological assessment.

4.1 Introduction

In the previous chapters, we learned that ecological data are multivariate, redundant
(correlated), spatially structured, and noisy. Here we begin a set of chapters aimed at
resolving some of these difficulties. In this chapter, we focus on data compression
and summary, with tools that reveal the larger trends in big data sets. The aim here is
to deal directly with the multivariate, redundant, and noisy aspects of ecological
data. In the next chapters, we will then look at discrete groups in the data, an
alternative and complementary approach to summarizing trends (Chap. 5); statistical
inferences on multivariate data—especially spatial inferences (Chap. 6); and a
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structured approach to multivariate explanatory (causal) models, which attempts to
explain why variables should be correlated (Chap. 7).

Ordination is the general term for a collection of techniques aimed at ordering
data to emphasize underlying trends or patterns. The result of an ordination is a
rendering of the major trends that captures the redundancy in the data (i.e., correla-
tions among variables, associations among samples) while suppressing the noise.
The result is a new set of variables—ordination axes—that represent the trends.
Usually, there are only a few main axes and so the ordination reduces the dimen-
sionality of the data: a data set with dozens to hundreds of species might be
summarized in two or three main compositional axes. Often, a welcome outcome
of this reduction in dimensionality is that the ordination can be depicted on a
physical page (e.g., in two dimensions).

The development of ordination techniques is closely tied to vegetation science or
community ecology in general and gradient analysis in particular. Gradient analysis
has a long history in plant ecology, beginning with the classic studies by Whittaker
(1956, 1967) and Curtis (Curtis and MclIntosh 1951; Bray and Curtis 1957) (see
Gauch (1982) for more history). There are several popular techniques, in three main
lineages that have evolved over the past several decades. Some techniques have only
recently come into more common usage, largely as a reflection of faster computers
and more widely accessible software. Many of these techniques are emerging anew
as tools for “big data”—especially for visualizing large, multivariate data sets. In
this, new users are embracing the same benefits that led community ecologists to
these tools long ago.

The choice of technique is to some extent dictated by the kind of data available for
the analysis. As we might anticipate, each technique has its strengths for particular
kinds of data or applications. Choices also depend on the specific goals of the
application and the extent to which any particular technique meets those objectives
explicitly. And so, a user needs to appreciate the options in order to choose an
appropriate tool for a task at hand. In this chapter, we develop a craftsman’s
appreciation for the tools for ordination. Subsequent chapters will build on this
foundation.

In terms of the overall workflow outlined in the Preface to this book, ordination
will serve us initially as a tool for exploratory data analysis, summary, and commu-
nication of highlights of data collected as part of inventory and monitoring programs.
Later, we will use ordinations as a framework for more targeted applications aimed
at multi-scale inference (Chap. 6) and ecological assessment (Chap. 10).

4.2 An Overview of Ordinations

The three ordination lineages correspond to three underlying models. These models
are (1) linear, (2) nonlinear and unimodal, and (3) a model that makes no explicit
assumption (here, termed agnostic). These response models are directly related to
the computational details of the techniques. The linear/nonlinear distinction can be
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applied in two ways. In one case, the assumption refers explicitly to relationships
among variables: principal components analysis assumes that the variables covary in
a linear fashion. In a second case, correspondence analysis and related techniques
assume that species respond to underlying gradients in a nonlinear and unimodal
fashion—without explicitly assuming that the species covary among themselves in a
nonlinear way. These relationships can be evaluated through exploratory data
analysis (Chap. 3).

Rather than focusing on the models underlying the analyses, we might also
categorize approaches according to the extent to which the researcher wants to
influence or constrain the analysis. There are three approaches:

1. Direct ordination orders samples (e.g., of species abundances) in direct relation-
ship to one or more ancillary (e.g., environmental) variables selected by the user.
Common examples include plotting species abundances relative to elevation or
hillslope position.

2. Indirect ordination focuses only on relationships among the variables in a single
(primary) data matrix. This might seek trends in species composition or the main
patterns in a set of environmental variables.

3. Constrained ordination forces the ordination of one (primary) matrix to be
expressed in terms of variables from an ancillary matrix. Typically, this would
aim to capture trends in species composition that are related to user-selected
environmental factors.

The choice of direct, indirect, or constrained ordination depends on the data
available for the analysis or, in some cases, the extent to which the researcher
chooses to use these data explicitly. All ordination techniques aimed at exploring
species-compositional patterns require species abundance (or presence/
absence) data: a samples x species primary data matrix. Direct and constrained
ordinations also require an ancillary matrix, typically of environmental descriptors
such as elevation, topography, soils, or climate variables. Indirect ordinations, of
course, may be performed simply by ignoring the existence of the ancillary matrix
for the ordination and addressing any relationships between ancillary variables and
the ordination afterward.

4.2.1 The Ordination Toolkit

The set of common ordinations can be sorted by response model and degree of
constraint (Table 4.1).

Principal components analysis (PCA) is a linear model, an unconstrained (indi-
rect) ordination. PCA 1is covered in any multivariate text, including several written
from an ecological perspective (e.g., Pielou 1984; Manly 2004; McCune and Grace
2002; Legendre and Legendre 2012). A related technique, factor analysis (FA;
Tabachnick and Fidell 1996), is also linear and indirect. Factor analysis is much
invested in labeling ordination axes, as latent factors identified via indicator
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Table 4.1 A catalog of ordination techniques (see text for details)

Indirect Constrained
Linear PCA, FA RDA
Nonlinear CA (RA), DCA CCA
Agnostic NMS, PCoA dbRDA

Direct ordination is not included here

variables. The constrained version of PCA is redundancy analysis (RDA; Legendre
and Legendre 2012). There is no constrained version of factor analysis.

Correspondence analysis (CA), also known as reciprocal averaging (RA; Hill
1973), is based on a nonlinear unimodal response model that assumes species sort
along environmental gradients in something akin to bell-shaped curves. An exten-
sion to CA, detrended correspondence analysis (DCA; Hill and Gauch 1980)
addressed some numerical issues with CA. CA and DCA are indirect ordinations.
The constrained version is canonical correspondence analysis, CCA (ter
Braak 1986, 1987).

The original agnostic ordination was based on ecological distances (Chap. 3,
Sect. 3.2.3) and was known as polar ordination (PO), an indirect ordination (Bray
and Curtis 1957). PO has largely been subsumed by two alternatives: nonmetric
multidimensional scaling (NMS; Kruskal 1964) and principal coordinates analysis
(PCoA; Anderson and Willis 2003). NMS is a numerical algorithm based on
ecological distances, while PCoA is a PCA of ecological distances; both are indirect
ordinations. There is no constrained version of NMS. The constrained version of
PCoA is distance-based redundancy analysis, dbRDA (Legendre and
Anderson 1999).

To these several techniques, we can add direct ordination, which is a user-
constrained approach in which the analyst chooses the ancillary (environmental)
variables by which to sort the primary variables (species). This yields three response
models and indirect versus constrained techniques: six approaches plus direct
ordinations. All of these approaches are in common usage today.

The full set of ordination techniques is detailed elsewhere (see especially McCune
and Grace (2002) and Legendre and Legendre (2012)) and in the digital Supplement
(S4) to this chapter. Supplement S4 also includes some guidance on choosing among
the tools. In the following sections, we work through a typical application of
ordination, focusing on the logical workflow and decision points. We do this for
two complementary approaches, principal components analysis (PCA) and
nonmetric multidimensional scaling (NMS), to recognize some nuances in the
details while emphasizing the overall similarity of the workflows.

The first example is a PCA of environmental factors, while the second illustrates
species composition using NMS. Both examples use the data sets from Sequoia
National Park in the southern Sierra Nevada of California (Urban et al. 2002),
introduced in the previous chapter (Sect. 3.3).
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4.3 Ordination Workflow

In this section, we first develop an application of PCA. In the following section, we
develop a parallel application using NMS. We then extract the commonalities of
these two illustrations, to generalize the approach.

An ordination analysis can be rather involved, as there are several steps along the
way and a deliberate approach is helpful in working through the steps. In general, the
aim is to arrive at a sample ordination, in which the samples are sorted along a few
axes that represent the main trends in the data set. These trends might be in terms of
species composition or environmental factors initially, but it will often be useful to
add species to an environmental ordination or, reciprocally, to add environmental
factors to an ordination of species compositional trends. However this might unfold,
the net result is similar, with a similar set of decision points and steps (Fig. 4.1).

In any application, there will be details that matter depending on the data and the
analytic approach. But applications share many issues in common, as we illustrate
with the following examples. The illustrations presume that exploratory data anal-
ysis (Chap. 3) has already been completed.

“R” mode “Q” mode

CorR

# of axes?
variance
captured?

axis identification?

correlation / \ weighted averaging

biplot joint plot

N .

joint biplot

Ordination

Fig. 4.1 Workflow for an ordination application. Analysis might begin with either a species (SPP)
or environmental (ENV) (or other!) data matrix and proceed via either R mode (based on a
covariance matrix C or correlation matrix R, or Q mode (based on a distance matrix D), or via
the raw data matrix (central route). The ordination is then evaluated in terms of a few queries (right-
side box), and perhaps then further post-processed with information from either the SPP or ENV
data sets, or both (see text for details)
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4.3.1 Principal Components Analysis

Principal components analysis is a linear model and thus appropriate for data sets in
which relationships among variables are approximately linear (the technique is
reasonably robust to minor violations of this assumption). Linearity comes into
this because the analysis proceeds not from the primary data matrix but from a
secondary matrix (Chap. 3, Sect. 3.2.3). The secondary matrix is either a covariance
matrix or a correlation matrix; both are linear models.

Unlike some of the tools we will consider, PCA has an exact analytic solution.
The solution is developed along several perspectives elsewhere (especially Pielou
1984; McCune and Grace 2002; see also Supplement S4), and here it is presented in
its essentials only.

4.3.1.1 Data Preparation

PCA would normally be preceded by exploratory data analysis (EDA, Chap. 3). In
this, issues related to sample sizes, normality, outliers, and so on would be discov-
ered and dealt with appropriately. The main decision point at this step is to base the
analysis on either a covariance matrix (C) or a correlation matrix (R). Correlations
are standardized from the covariances, and so treat all variables equally (each is in
the same units, standard deviations). By contrast, covariances reflect the measure-
ment units and ranges of values of the raw data. If the variables are in the same units
(e.g., species abundances), then covariances will be biased toward the variables with
the largest values (e.g., the most abundant species) ... and this might be perfectly
reasonable. Alternatively, the data might be relativized or transformed to down-
weight the most abundant species so rare species can contribute to the analysis
(again, see Chap. 3).

If the variables are in different units (as would be the case for many environmen-
tal factors), then variables must be relativized or standardized or the covariances
would reflect the measurement units (which would be silly). Using a correlation
matrix solves this issue neatly; relativizing the data would also reconcile disparate
units.

In practice, data on species abundances are often difficult to reconcile with a
linear model (Sect. 3.3.1, Fig. 3.6). Environmental factors are more likely to fit a
linear model. In the illustration presented here, PCA is applied to a correlation matrix
computed from a set of environmental factors collected in Sequoia National Park in
the Sierra Nevada of California, USA (Fig. 4.2, data from Urban et al. (2002),
previewed in Chap. 3).

4.3.1.2 The Analysis

PCA aims to capture the main trends in the data by constructing new variables (i.e.,
the principal components) that represent common patterns in the way that the raw
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Fig. 4.2 Graphical representation of the correlation matrix for environmental factors in the Sierran
data set. Variables are arranged to emphasize patterns of correlations. See Table 3.6 for description
of variables. Plot constructed using the corrplot package (Wei and Simko 2021) in R (R Core Team
2021)

variables covary. A subset of several variables that tend to covary strongly (either
positively or negatively) would be extracted as a principal component representing
those variables. Another PC would be extracted for a different set of variables that
covary, and so on. The resulting set of principal components provides a new
coordinate system for the data, a set of just a few main axes in which the samples
can be projected. This new coordinate system reduces the dimensionality of the data,
suppresses noise, and reveals the main trends in the data—precisely what an
ordination is intended to do.

The analytic solution to PCA is provided by eigenanalysis of the covariance or
correlation matrix. For the correlation matrix R, the solution is to find two new
matrices U and A (lambda) such that RU = AU. Here, A is a diagonal matrix of the
eigenvalues of R and the matrix U holds the eigenvectors as its columns. For a data
set of p environmental factors measured over n samples, R is p x p (variable x
variable), A is p X p (PC x PC), and U is p x p (variable x PC).

The matrix A is diagonal, with eigenvalues in its diagonal and 0’s otherwise. The
eigenvalues A indicate the amount of variance from the input matrix that is
represented on each of the principal components: the most on PC 1, the next most
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on PC 2, and so on. Typically, most of the variance is captured on the first few PCs,
with the last few PCs of minor importance and interpreted (and disregarded) as noise.
Note that because there are p PCs computed, the analysis captures all of the variance
in the input data matrix, but it repackages this variance into just a few main axes and
so provides a compact summary of the data.

The matrix U holds eigenvectors as its columns, one column for each PC. The
eigenvectors are used to reproject the samples into PC space. These are regression
coefficients: the first eigenvector (first column of U), multiplied by the original
variables for the first sample (i.e., the first row of the n x p primary matrix), yields
that sample’s position on the first PC. The second eigenvector locates the samples on
the second PC, and so on. This is done efficiently, by matrix multiplication, for all
samples and all PCs. A plot of samples into a low-dimensional PC space provides the
sample ordination.

The raw result of PCA is the summary matrices A and U. Note that these two
summary matrices completely describe the input data ... but there is still a lot of post-
processing and interpretation to do.

4.3.1.3 Post-processing and Evaluation

A principal components analysis is perhaps typical of many ecological analyses, in
that the solution is quick and tidy, but there are still several post-processing steps
(recall the extensive post-processing of the species distribution models in Chap. 2!).
These steps are developed below, and illustrated with the environmental data set
from Sequoia National Park.

How much variance do the PCs capture? How many axes to retain? For this
Sierran data set, there are 13 environmental variables, and so there are 13 principal
components. The variance on each can be visualized with a scree plot, a histogram of
variances over the PCs (Fig. 4.3). These scree plots typically are rather steep,
illustrating that most of the variance is summarized on the first few PCs.

The decision about how many axes to retain is ultimately subjective, but there are
some guidelines. On a purely pragmatic basis, if the application is to be plotted on a
physical page, then 2 is the right number of axes to retain—or 3, though these would
then require either a 3D graphic or a set of pairwise plots (1 vs 2, 1 vs 3, 2 vs 3).
Perhaps more typically, the scree plot is examined for a natural break that might
reveal the main components.

For a PCA computed on a correlation matrix, the total variance is equal to the
number of variables, as each variable contributes unit variance. In this case, a PC that
has an eigenvalue greater than 1.0 contributes to data summary, while a PC with an
eigenvalue less than 1.0 provides less information than a raw variable. From this, it is
typical to interpret PCs with eigenvalues larger than 1.0. (For an analysis from a
covariance matrix, there are randomization tests that can support a similar decision
process.)
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Fig. 4.3 Scree plot of the eigenvalues (as variances) from a PCA of the environmental variables in
the Sierran data set. Constructed using the native plot function for a PCA object in R

In the Sierran case, the first four PCs have eigenvalues larger than 1.0 (the fifth is
marginal), but the first two are clearly the most important. In what follows, four are
interpreted in tabular summaries while only the first two are plotted graphically.

What are the axes? The PCs represent the main trends in the data, but what does
this mean? To identify the axes ecologically, it helps to relate these to the original
input variables. The eigenvectors can suggest how each variable relates to each PC
(these are the loadings on the PCs), but it is tidier to compute correlations. This
generates a table that has p rows for p input variables and a column for each retained
PC. It is convenient to add a couple rows to this table, to include the variance on each
PC and the cumulative variance over all retained PCs (Table 4.2).

Tabular correlations are precise but not always easy to interpret at a glance.
Another way to interpret these is to plot them as correlation vectors. A correlation
vector in PC (or any ordination) space graphically shows the relationship between an
input variable and each plotted PC: a vector nearly parallel to a PC is very strongly
correlated with it (positively to the right or up, negatively to the left or down). The
length of the vector indicates the magnitude of the correlation. A vector that lies “in-
between” two PCs is correlated with both (and probably not strongly). The angle is
the arccosine of the correlation itself. (We can verify this relationship by recalling
that we draw Cartesian (X,Y) coordinates at 90° to each other to show their
independence: acos(0) = 90.) In computing correlation vectors, it is typical to also
estimate a test of significance of the correlations, with only significant correlation
vectors plotted in graphics (here, using package ecodist in R, Goslee and Urban
2007). A plot of sample scores on selected PCs, with the correlation vectors overlaid,
is an ordination biplot (Fig. 4.4). This display makes it easier to interpret PCs as
“bundles” of covarying input variables.
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Table 4.2 Correlations between environmental factors and the first four principal components
(blanks are not significant, P > 0.05), along with eigenvalues and proportion of total variance (raw
and cumulative), for the Sierran data set (variables described in Table 3.6)

Variable PC1 PC2 PC3 PC 4
Eigenvalue 3.037 1.987 1.470 1.420
Variance 0.234 0.153 0.113 0.109
Cumulative 0.234 0.387 0.500 0.609
Elevation 0.844
Slope —0.188 —0.275 0.244 —0.578
TAspect —0.180 —0.205 0.709
TSI 0.306 0.240 —0.480
xLitter —0.244 —0.262 0.511 0.396
xDepth -0.719 0.281
sDepth —0.174 0.725
pH —0.842 0.186
C 0.307 —0.783 0.197
CN 0.553 -0.173 0.173 0.224
P 0.525 0.325 0.352
ECEC —0.691 —0.584
Clay —0.180 —0.629 —0.533
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Fig. 4.4 A biplot of the PCA of the Sierran environmental data, showing correlation vectors for the
environmental factors (variable codes in Table 3.6). Note that this figure is plotted so that the
“elevation gradient” is on the vertical axis, a purely cosmetic decision. Constructed using the
ecodist package in R (Goslee and Urban 2007)
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Fig. 4.5 A joint plot of the environmental PCA from the Sierran data set, displaying sample plots
(points) as well as species at their weighted-average positions along the first two PC axes (species
codes in Table 3.5). Note that the “elevation gradient” has been displayed on the vertical axis, a
cosmetic decision

Adding species into the sample ordination This ordination was conducted on
environmental variables, but it is a straightforward task to add species to the
ordination. In this, we calculate the average ordination score, on each axis, for
each species. This average is weighted by the relative abundance of each species
on each sample, so that samples where the species is most abundant contribute the
most to the average, while samples on which the species is absent do not contribute
at all. While this weighted-averaging is a focus on one ordination technique (corre-
spondence analysis), species can be added to any sample ordination after the fact.

Note that the weighted averaging assumes that a species shows a unimodal
response to the ordination axis, so that it makes sense to summarize its distribution
along the axis as an average. This would not work, by contrast, if a species showed a
distinctly bimodal distribution along an axis. Weighted averaging also is more
appropriate than computing correlations between species abundances and ordination
axes, if the species responses are unimodal (i.e., nonlinear). A plot that includes both
samples and species positions is a joint plot (Fig. 4.5), and this overlaid with
environmental correlation vectors is a joint biplot. Depending on the number of
environmental factors and species, these can be a bit busy.
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4.3.1.4 Reporting

The following information communicates how the analysis was conducted and key
decision points along the way:

Data description (what the variables are, sample sizes); any editings or trans-
formations (from EDA); whether R or C was used for the analysis

Software used to perform the analysis (should not matter for PCA, but some
implementations vary in the details)

How many axes were retained, and why; variance captured on each axis and
cumulative (as in Table 4.2)

Axis identification: correlations with environmental factors (table and/or biplot)

If the analysis was of environmental factors, how species were added (joint plot);
if species were analyzed, how environmental factors were added (as biplot)

Optional: joint biplot

4.3.2 Nonmetric Multidimensional Scaling

In this section, we develop an ordination workflow to parallel the application of
PCA. This example uses nonmentric multidimensional scaling (NMS), and some of
the details are quite different from PCA ... but the basic workflow is the same.

NMS is an indirect ordination based on dissimilarities or ecological distances
among samples. As it is based on distances, it is agnostic about any underlying
responses of species to environment (it can work with linear or nonlinear data).
Unlike PCA, which has an exact analytic solution, NMS is a numerical algorithm: it
finds a solution by successive approximation. We illustrate NMS here as a contrast to
PCA and because NMS has been shown to perform well with a variety of ecological
data sets. (It is also featured in many other applications beyond ecology.) We will
come back to NMS in Chap. 10.

4.3.2.1 Data Preparation

Data for NMS are typically screened and explored as with other ecological data sets
(Chap. 3). The analysis proceeds from a distance matrix that contains the dissimi-
larities among all pairs of samples, an n x n matrix D. This matrix is symmetic and
holds 0’s in its diagonal. For computational simplicity, the matrix is typically stored
as a vector, with elements corresponding to the lower triangle of D: d51, d3, ds», ...,
dn, n—1-

There are very many alternative distance measures (Sect. 3.2.3), and a major
decision point in NMS is choosing a measure appropriate to the data set. For species
compositional data, variations of the Bray-Curtis measure are often used (Sect. 3.2.3,
Eq. 3.8). Note that this measure will produce different results depending on how the
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species data are relativized or transformed. For this reason, researchers often repeat
the analyses to explore alternative data relativizations or distance measures.

4.3.2.2 The Analysis

NMS aims to find a sample ordination in which the distances among samples in
ordination space reflect, as nearly as possible, the ecological distances among
samples. For a two-dimensional ordination, this means that the distances apart on
the page (a plot of the ordination) are as similar as possible to the m-dimensional
ecological distances (e.g., Bray-Curtis distances). This solution is generated by
numerical approximation.

NMS requires that the number of ordination axes, k, be decided in advance.
Sometimes this is subjective and arbitrary, as in the case where the application
requires a 2D solution that can be easily visualized. More typically, the proper
number of dimensions is unknown, and so the user computes ordinations of several
dimensions and then chooses k afterwards, based on goodness-of-fit or explanatory
power.

The numerical algorithm of NMS toggles between two representations of the
data. One is the ordination itself, in k dimensions. The other is a plot of ecological
distances (e.g., Bray-Curtis distances) among samples and sample separation in
ordination space. In the heuristic in Fig. 4.6, the ordination is on the left and
ordination distances are simply the Euclidean distances between pairs of samples
(dots) in ordination space. On the right is the Shepard diagram (Shepard 1962) of
ordination versus ecological distances. The aim is to make this fit as linear as
possible.

The ordination is generated in a stepwise fashion:

1. Begin with an arbitrary configuration to the ordination (e.g., random coordinates
in k-space), corresponding to the left panel of Fig. 4.6.
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Fig. 4.6 Schematic of how NMS works. Ordination is on the left, Shepard diagram on the right.
The aim is to generate an ordination such that pairwise distance relationships in the ordination
reflect ecological distances as faithfully as possible
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2. Compute pairwise distances among samples in ordination space, and fit these to
the ecological distances as in a regression (right side of Fig. 4.6). Compute a
“badness-of-fit” index, termed stress, which is the complement of a more con-
ventional goodness-of-fit term for a regression.

3. Find samples that fit particularly badly in this regression and move them slightly
in ordination space, to try to improve their fit.

4. Repeat (2-3) until the fit cannot be improved further. Save the final sample
configuration as the ordination, and save the stress value for this configuration.

Clearly, in the first iterations, the fit will be terrible (i.e., from random numbers),
and every iteration will improve the fit. Eventually, the adjustments are quite small
as the solution converges. As a numerical algorithm, an exact solution is not
guaranteed, and so the convention is to compute several ordinations and then choose
the best version (lowest stress) as the final ordination.

When the number of dimensions k is not known in advance, a step-down
procedure is followed, in which a set of several replicate ordinations is computed
for a range of values of k (say, 10 iterations each, for k= 1,2, 3, ..., 6). This is a lot of
ordinations, and for large data sets, this can be computationally demanding. (Modern
computers make this less of an issue than it used to be.)

From a step-down procedure, a plot of stress versus k helps choose an appropriate
number of axes. Like the PCA scree plot, this curve is typically steeply decreasing
and the aim is to find a natural break in the curve to choose k. Again, as with PCA,
the choice of how many axes to use is ultimately subjective.

Beyond its numerical algorithm, NMS is unusual in that it finds the k-dimensional
solution for all axes simultaneously. That is, the second axis is not found from the
residuals of the first (as with most other ordinations). The solution is also unusual in
that it is “free floating” in k dimensions: the configuration is arbitrary in k-space. For
this reason, it is conventional to rotate the initial solution so that the first axis
represents most of the variation, the second axis the next most, and so on. A simple
way to do this is to perform a PCA on the initial NMS solution and to retain all the
principal components. This keeps the configuration exactly as it was but rotates it so
that the axes represent successively decreasing proportions of the variance in the data
(revisit PCA, above, to verify that this makes sense!).

The end result of this processing is an ordination of samples in k dimensions, a
new data set of sample scores on each of the ordination axes.

4.3.2.3 Post-processing and Evaluation

As with any ordination, the initial solution is a starting point for additional interpre-
tation. In the case of NMS, the first decision is to choose an appropriate number of
axes, from a step-down procedure (above). For the illustration here, the NMS is of a
matrix of Bray-Curtis distances computed from species abundances, relativized to
treat all species similarly (a Wisconsin double relativization, see Chap. 3, Sect. 3.
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Fig. 4.7 Step-down procedure for the Sierran tree species data set. Left: stress; right, R
Constructed using the ecodist package in R (Goslee and Urban 2007). Solid lines are means and
dashed lines, min/max values from ten replicate ordinations for each dimension 1-6

2.3). There are 11 species in the analysis. The Bray-Curtis distances were extended
using the stepacross function in the vegan package in R (Oksanen et al. 2021).

How many axes? The step-down procedure shows a large reduction in stress from
one to two dimensions, and lower reductions in stress beyond that (Fig. 4.7).
Correspondingly, the overall goodness-of-fit of the ordination, as the R of the
regression in the Shepard diagram, shows a large increase at two dimensions. For
these reasons, a two-dimensional solution was selected. The best 2D configuration
had a stress of 0.16 and a total R* of 0.86. It might be noted here that while the stress
values vary on [0,1], what constitutes a suitably low stress value depends on the data
set.

It is often informative to plot the final Shepard diagram for an NMS ordination.
This clearly reveals the goodness-of-fit. In the Sierran case, it also shows the effect of
using extended distances in the analysis: in Fig. 4.8, all of the points above a value of
1.0 on the Y axis have been extended; otherwise, all of those values would have been
fixed at 1.0, and the overall fit would be much worse (and nonlinear). The takeaway
from this figure is that the fit is nearly linear, which means that we can interpret
sample location in ordination space as a reasonable reflection of ecological distances.
That is, samples that are close together in ordination space are compositionally
similar, while samples that are far apart are ecologically different from each other.
This interpretation is the explicit aim of an NMS ordination.

How much variance do the axes capture? The ordination fit provides an estimate
of the explanatory power of the ordination: the R of the fit between ordination
distances and ecological distances. This is an estimate of how much of the compo-
sitional variability in the data set is represented in the ordination. In this case, the
explanatory power is rather high for an ecological ordination, a result of the low
species diversity and strong sorting along a long elevation gradient (of course, we
don’t know that yet!).
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Fig. 4.8 Shepard diagram for the NMS of Sierran tree species. The 1:1 line is in red. Distances
above 1.0 were extended in the analysis (see text)

The relationship shown in Fig. 4.8 is between distance matrices, and the corre-
lations behind the R* values are Mantel correlations. Mantel tests (Mantel 1967) are
based on correlations between distance or dissimilarity matrices. Beyond this exam-
ple here, we will revisit Mantel tests again in Chaps. 5 and 6.

Assigning the explanatory power of individual NMS axes is complicated by the
way they are computed, simultaneously. That is, where a sample falls on axis
2 depends on where it is located on axis 1; the axes are not fitted independently.
The variance accounted on axis 1 can be estimated simply, as the regression r
between sample separation on axis 1 and Bray-Curtis distances. For axis 2, the
variance on that axis is the total R? (here, in 2 dimensions) minus the #* on axis 1. For
higher-dimensional NMS ordinations, subsequent axes are estimate similarly, by
differencing. In this case, the first axis explains 72% of the compositional distances,
and the second axis explains 14%.

What are the axes? As with PCA, we will want to identify the axes, to label them
with an ecological interpretation. Because we ordinated species data, we start by
looking at how species sort in ordination space. Again, because we suspect that
species response might not be linear, we can plot species abundances from the
primary data matrix against sample scores on NMS axis 1. This is not shown here,
but we do suspect a nonlinear response from EDA (Chap. 3), so computing corre-
lations would be inappropriate. Instead, we can compute weighted-average species
scores on the ordination axes. These can be saved in a table, or plotted into the
ordination as a joint plot (Fig. 4.9).
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Fig. 4.9 A joint plot of the NMS ordination of compositional distances, with species located at
their weighted average positioned on each axis (species codes in Table 3.5)

Adding environmental factors into the ordination The NMS axes here are
defined in terms of species composition, but we might also wish to interpret them
in terms of environmental factors. To do this, the ordination axes can be correlated
with the environmental factors, yielding a tabular summary (Table 4.3).

These correlations can also be visualized by adding correlation vectors to the
ordination diagram, a biplot (Fig. 4.10).

Again, the sample locations, species positions, and environmental correlation
vectors can all be combined into a joint biplot (Fig. 4.11). This plot can be busy but
holds an impressive amount of information.

Note that some of this information is redundant (e.g., tables and figures with
species scores or environmental correlations). The user would either choose which to
include (table or figure but not both) or would relegate some bits to appendices.
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Table 4.3 Summary of the NMS in terms of compositional variance explained and correlations
with environmental factors (blank: P > 0.05) (environmental variable codes in Table 3.6)

NMS1 NMS2
R? 0.72 0.14
Cumulative 0.72 0.86
Variable
Elevation 0.927
Slope
TAspect 0.188
TSI
xLitter 0.249
xDepth —0.535 0.425
sDepth
pH —0.570 0.460
C 0.299 —0.187
C.N 0.439
P 0.301
ECEC —0.409 0.191
Clay

4.3.3 Reporting

A full NMS ordination analysis involves a lot of processing steps and some
explanation of how the ordination was constructed. These details need to be
communicated:

NNENELN

N

Data preparation, any relativizations or transformations, and results of EDA
Choice of distance measure and whether the distances were extended because of
saturation

Results of step-down procedure and decision about how many axes to use
Stress value and overall R* for final configuration

Variance accounted on each axis

Identification of axes in terms of species composition; weighted-average species
scores on the axes (table, joint plot)

Optionally, identification of axes in terms of environmental or other factors;
correlations with environmental factors (table, biplot)

Optionally, joint biplot

4.3.4 Collecting Terms

PCA is an analysis of trends among variables and proceeds to an ordination of
relationships among samples. For this reason, it is sometimes referred to as an “R-
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Fig. 4.10 A biplot of the NMS ordination of compositional distances for Sierran tree species (envi-
ronmental variable codes in Table 3.6)

mode” analysis (think correlations, R). By contrast, nonmetic multidimensional
scaling is an analysis of trends among samples; this is a “Q-mode” analysis (think
sample guadrats). With NMS, we began by focusing on species composition, and
then overlaid the environmental factors. Which is to say: R and Q refer to alternative
routes to similar endpoints.

Beyond this, we did the PCA using environmental factors and the NMS with
species composition. These suggested the choice of techniques: PCA for environ-
mental factors because the assumption of linearity was (nearly) met; NMS for the
species because exploratory data analysis suggested nonlinearities. Again, the ana-
lyses are parallel in that both ended by incorporating both species and environmental
variables (i.e., into a joint biplot).

But these two examples are not interchangeable; they tell us different things. The
PCA emphasizes environmental patterns and the species did not contribute to this
solution. In a sense, it is simply our good luck that the species tend to sort along the
main environmental PCs. Elevation is a major contributor to the first PC, but as PC1
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Fig. 4.11 A joint biplot of the Sierran NMS ordination, combining Figs. 4.9 and 4.10 (see Table 3.
5 for species codes, Table 3.6 for environmental variables)

captures only 23% of the total variance, there is clearly a lot of environmental
variability in this data set that is unrelated to elevation.

By contrast, the NMS emphasizes compositional trends and is unconstrained by
the environmental factors. Again, it is our good luck that these factors are indeed
correlated with the compositional trends (or perhaps more charitably, that we chose
appropriate candidates when we measured environmental factors). In this case, the
elevation gradient expressed on NMS1 is quite dominant: it captures 72% of the
compositional variability (as dissimilarities) in the species data set.

The two examples are complementary and provide different but compatible
insights into these forests. In practice, it is often useful (and not onerous!) to use
complementary techniques on the same data sets.

These illustrations have focused on two popular and robust techniques, but
similar workflows could be developed for alternative techniques such as factor
analysis, correspondence analysis, or principal coordinates analysis. Some details
would vary but the overall flow is the same.
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In the following chapter, we turn to classification as an analysis that is comple-
mentary to but compatible with ordination. While the examples here have been
mostly descriptive and exploratory, we will turn to inferential approaches, using
constrained ordinations, in Chap. 6.

Which is to say, ordination can serve as a fundamental tool with ecological data,
an exploratory entry point as well as a foundation for subsequent applications.

4.4 Further Reading

Much of the history of ordination and gradient analysis is itself rather dated but still
quite relevant. These sources include several books (Whittaker 1978; Orléci 1978;
Gauch 1982; Jongman et al. 1995; Manly 2004) and some in-depth reviews (espe-
cially Beals 1984). McCune and Grace (2002) provide a user-friendly presentation,
focusing on guidelines for performing and evaluating ordinations. Legendre and
Legendre (2012) remains an authoritative resource for ordination and related numer-
ical methods.

Most texts offer some insights and recommendations about the relative strengths
and weaknesses of these techniques for various sorts of applications (e.g., McCune
and Grace 2002; Legendre and Legendre 2012). Often these recommendations are
based on statistical (i.e., theoretical) arguments. While these are certainly valid, it is
also important to compare tools from a more pragmatic basis. Supplement S4 for this
chapter offers some guidance, along with additional references.

4.5 Summary and Prospectus

Ordination refers to a collection of tools used to summarize the main trends in
multivariate data sets. In this, the tools reduce the dimensionality of the data—
typically to a few axes that can be depicted easily on a page. The analysis also
suppresses noise in the data, by relegating this to minor axes that are discarded.
There is a very long history of the development and application of ordinations in
ecology. There are three main lineages based on the underlying response model:
linear, nonlinear, and agnostic. Each of these has indirect and constrained versions of
the analysis. Each of the resulting approaches is in common use by ecologists.
Ordination serves as a powerful tool for exploratory analysis of complex data
sets. Analyses often combine species and environmental data via after-the-fact
addition of environmental factors to a species ordination, or vice versa. The sum-
mary provided by the analysis can be an end result in itself, but ordinations also can
serve as the framework for subsequent analyses. We turn to one complementary
analysis, in the following chapter. We return to ordination, and constrained ordina-
tion in particular, in Chap. 6 where we explore inferential methods for dissecting
species-environment relationships over a range of spatial scales.
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Chapter 5 )
Classification Chack or

Abstract Classification is the complement of ordination (Chap. 4): while ordination
summarizes continuous trends in a multivariate data set, classification seeks discrete
groups. With species data sets, these groups are community types; with environ-
mental variables, the groups are biophysical settings or habitat types. As with
ordination, there are many alternative tools available, with a long history in ecology.
Here we begin with perhaps the most common approach, cluster analysis. The
workflow begins with exploratory data analysis, then proceeds to post-processing
to interpret and communicate the results. This post-processing might summarize the
groups in terms of the variables used to define them (e.g., indicator species for
compositional types, environmental predictors for habitat types) or it might cross-
walk the data (e.g., indicator species for habitat types or environmental predictors for
community types). As with ordination, classification provides a powerful summary
for the presentation of data sets collected as part of an inventory or monitoring
program. Ordination and classification are especially powerful when integrated
together.

5.1 Introduction

There are two complementary approaches to summarizing multivariate ecological
data sets. With ordination, we focus on continuous trends in the data, such as
species-compositional trends along environmental gradients. In classification, we
focus on discrete groups in the data. These two perspectives are complementary and
not exclusive, as it is not unrealistic to have more-or-less discrete communities that
are themselves arrayed along environmental gradients, or trends within more-or-less
discrete communities. Because of this, we will come to appreciate how powerful
these two approaches can be when applied in tandem.
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We considered ordination in the previous chapter; now we attend classification
techniques. In community ecology where the data set consists of species abundances
measured on sample locations, the goal is to discover typal species assemblages or
communities. This goal presumes that some species co-occur naturally or that groups
of species respond similarly to environmental heterogeneity, in contrast to the
individualistic model of species response implicit in many ordinations. If the data
set comprises environmental variables instead of species, classification will result in
typal biophysical settings (e.g., topographic positions, sites with similar soil chem-
istry, and so on) or habitat types.

Identifying discrete groups in a data set will invite two additional questions. First,
we will ask whether the groups are real in the sense that the groups really do differ in
some way; this will require that we develop a way to test group differences
statistically. Second, we will ask how the groups differ, that is, which species
occur differentially across groups or which environmental variables best account
for group differences. This will lead to a variety of after-the-fact analyses of groups.
In the end, if we determine that groups identified by classification are not really
discrete or ecologically uninterpretable, we would be left with an ordination-based
gradient model as the logical alternative. In many applications, both approaches are
useful and, as we will see, classified types are readily embedded into ordinations.

In terms of the overall workflow of this book, classification joins ordination as a
toolkit for exploring, summarizing, and presenting the main patterns in ecological
data sets. This would apply especially to inventory and monitoring data. Sometimes
the analysis is an end in itself (i.e., identifying communities), but more typically
classification provides a foundation for further analyses such as site prioritization
(Chap. 8) and ecological assessment (Chap. 10).

5.2 Overview of Classification

Various classification methods have been devised over the past several decades.
These range from rather simple methods that were originally performed by hand to
more recent and more computationally demanding methods. Most methods, how-
ever, can be categorized according to a few simple criteria. And, once classified, we
tend to ask the same questions about the groups no matter how they were created.
Here we consider classification in a cursory pass, before delving into more detail on a
few popular approaches.

5.2.1 Classification Techniques

First, classification methods can form groups in one of two directions. In agglom-
erative methods, the analysis begins by considering each sample a discrete group
and samples are then combined into larger groups (“from the bottom up”). By
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Table 5.1 A classification of classification techniques (items in parentheses exist but are depre-
cated or uncommon; n/a means no method exists)

Direction Nesting Monothetic Polythetic
Agglomerative Nested n/a Clustering

Not nested n/a Pooling
Divisive Nested (Association) (Partitioning)

Not nested (Partitioning) (Divisive analysis)

contrast, divisive methods begin by considering all the samples to represent a single
group. This group is then partitioned into smaller groups (“from the top down”).

Second, classification can result in hierarchical or nonhierarchical groups. In the
former, groups are nested so that each group contains smaller groups and is itself
contained in a larger group. Nonhierarchical groups are not nested.

Finally, these methods can be sorted according to the number of variables used to
define or drive the classification. In monothetic methods, the classification depends
on a single variable or criterion (typically, single variables applied sequentially at
each step). By contrast, polythetic methods consider multiple criterion variables at
each step of the classification.

These sorting criteria would seem to yield eight possible classification methods,
but this is not the case. There are at least two polythetic ways to perform agglom-
eration and no way to perform a monothetic agglomeration. There are two ways,
monothetic and polythetic, to perform a divisive classification. The following
sections outline the common classification approaches used in ecology. We then
develop a workflow for applications, beginning with what is probably the most
commonly used technique. This workflow can be adapted readily to alternative
techniques (Table 5.1).

To be thorough, we might note that species distribution modeling (Chap. 2) is a
trivially simple monothetic divisive technique: we divide the data into one group of
samples where the species occurred and another group where the species did not
occur. Thus, the identification of the groups is not very interesting, and we focus
rightly on whether and how these two groups differ—an after-the-fact discrimination
of the groups. This discrimination is common to all classification applications.

5.2.1.1 Hierarchical Agglomerative Classification

By far, the most common classification method is polythetic hierarchical agglomer-
ative classification, or clustering. In this, the analysis begins by considering each
sample to be a separate group. The two most similar groups are then joined into a
new group. The next most similar groups are then joined, and so on. Early in the
clustering, the joinings are between pairs of individual samples. Later, the joinings
are of pairs of groups, each group including many samples. Ultimately, all samples
are included in a single group. Because of the joining algorithm, each group contains
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smaller groups and is itself contained in a larger group, so the procedure is hierar-
chical. The result is typically summarized in a dendrogram, an inverted tree that
traces the sequence of joinings. Clustering is intuitive and superficially simple,
which explains its popularity. Decisions must be made, however, about how to
compute ecological similarity between two samples and especially about how to
compute similarities between groups that contain more than one sample. The user
must also decide how many groups to retain; the dendrogram allows many levels.
These decisions give rise to several alternative approaches to clustering, to which we
will return.

5.2.1.2 Nonhierarchical Agglomerative Classification

An alternative to clustering is a polythetic agglomeration that is not hierarchical. In
such a solution, the groups are not contained by larger groups, nor do they contain
smaller groups. The simplest algorithm begins by choosing a number of kernels or
centers in the multivariate space defined by the primary data matrix (e.g., sample
points in m-dimensional species space). Each sample is then assigned to the nearest
kernel, that is, the kernel to which the sample is most similar, based on Euclidean
distance. The result is “pools” of similar samples in the multivariate space, and so
Pielou (1984) coined the term pooling for this approach. This same method is often
called K-means partitioning because it creates K clusters in the sample space, with
the clusters as internally homogeneous as possible. Importantly, the number of
clusters (K) must be specified in advance by the user. Unsupervised classification
of remotely sensed images is typically conducted by K-means partitions of the
spectral bands (variables) that comprise the images (e.g., Lillesand et al. 2015).

Pooling is often recommended as the technique of choice for very large data sets.
In these cases, an initial pooling is used to provide a smaller number of more
homogeneous groups, which are then themselves used as aggregate (averaged)
samples for subsequent analysis. This further analysis might be hierarchical cluster-
ing or ordination. K-means clustering also can be used to partition an ordination
space into discrete regions (groups of samples), as we will consider later.

5.2.1.3 Monothetic Divisive Classification

The most common (perhaps the only common) monothetic divisive method is
association analysis (Williams and Lambert 1959). The procedure was designed
for species presence/absence data but could be used on any binary data matrix. In the
analysis, the samples are partitioned into two groups according to the presence or
absence of a single species. That species is then removed from further consideration
and the procedure repeats, choosing a second species on which to partition the
samples. The result is a divisive hierarchical classification in which each group
can be “keyed out” according to the presence or absence of the chosen indicator
species at each iteration (i.e., each branch of the resulting decision tree).
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5.2.1.4 Polythetic Divisive Classification

A logical extension of association analysis, at least conceptually, would be to use
actual abundances (instead of binary data) and to allow for multiple criterion species
at each level of the classification. This approach would be polythetic and divisive.
Legendre and Legendre (2012) discussed possible algorithms but noted the compu-
tational challenge. The task is to find the “best” partition of samples in a multivariate
space, and the only sure solution to this task is examine every possible partition of
the data—a daunting task if the number of samples is large. Kaufman and
Rousseeuw (1990) provide an algorithm for a polythetic divisive classification
based on the method of Macnaughton-Smith et al. (1964).

One method that has proven popular is a hybrid technique that partitions an
ordination divisively. This reduces the task above into the much simpler task of
finding the optimum partitioning of a single ordination axis (i.e., a one-dimensional
problem rather than a multidimensional one). One method, called two-way indicator
species analysis (TWINSPAN, Hill 1979) uses a reciprocal averaging ordination as
its basis. This ordination axis is “split” into two groups, and species that show a
preference for one side or the other of this axis are identified as indicator species.
The algorithm is actually rather complicated and is not considered further here (but
see Supplement S5.3). The net result is an ordered table which summarizes the
ordination, the groups derived from the ordination, and the species that show high
indicator value for each group. As with association analysis, TWINSPAN also
provides a key via which any sample can be assigned to a group according to its
species composition.

5.2.2 Issues in Classification

While classification techniques often seem beguilingly simple, a number of issues
can complicate the analyses. Many of the techniques, especially hierarchical clus-
tering, depend on an ecological distance measure (recall our previous discussion of
secondary data matrices in Chaps. 3 and 4), and the choice of distance metric can
substantially affect the classification results.

Classification methods also vary in the geometry or other attributes of the groups
they produce. Some produce compact groups, some diffuse; some work best for
small data sets as compared to larger ones; and some are more or less vulnerable to
noisy data or other data issues. We will address these as we consider the more
popular classification methods used by ecologists.
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5.2.3 Working with Classified Groups

Having defined groups—whether arbitrarily or through a statistical classification
technique—there are a few questions that arise naturally about the groups. First, we
will want to know whether the among-group differences are statistically significant:
Are the groups real? Next, we will probably want to know how the groups differ.
Finally, we might want to be able to predict group membership for new samples (i.e.,
those not used to define the groups). These are exactly the questions we addressed
while evaluating species distribution models, when the number of groups was two
(“habitat” or “not”); now, we will allow more groups. Further, because we might
create groups from either species compositional or environmental variables, we will
broach more options in how we interpret the groups. Because these questions apply
generally to groups—no matter how there were defined—we return to these ques-
tions after we consider techniques for creating groups.

5.2.4 Workflow

An application in classification invites a straightforward workflow that unfolds in
several steps (Fig. 5.1). As with other analyses, the main step—creating the
groups—is important but might not be the most involved bit of the workflow.
Post-processing the groups can be more involved. In particular, we will want
evaluate the groups in terms of whether they are statistically different and how

Fig. 5.1 Workflow for an

application of classification.
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they differ. The classification can be of either species or environmental (or other
ancillary) data. The post-processing would naturally evaluate the groups in terms of
the variables that formed them (i.e., species groups in terms of species, environmen-
tal groups in terms of environmental factors). But the complementary assessments
are also interesting and often an aim of the analysis: evaluating species groups in
terms of environmental factors or environmental groups (habitat types) in terms of
species response to these.

In the following sections, we develop two illustrations of a classification
workflow. The first demonstrates cluster analysis, and then we compare this to a
nonhierarchical pooling. These two starting points converge in a parallel workflow
in evaluating group differences.

Additional details on classification techniques, as well as some alternative
approaches to evaluating group differences, are provided in a digital supplement to
this chapter (Supplement S5).

5.3 Cluster Analysis

Clustering is a hierarchical agglomerative method for identifying groups of samples
in a multivariate data set. If the data are species abundances measured on sample
plots, then the groups are compositionally similar species assemblages or commu-
nity types. If the data are environmental variables, then the groups are similar
biophysical settings or habitat types. While conceptually intuitive and reasonably
straightforward as an algorithm, there are subtleties to clustering that present deci-
sion points in applications. Nonetheless, clustering remains by far the most popular
classification technique used today. The technique is intuitive, well understood by
statisticians as well as practioners, and (perhaps most importantly!) it performs quite
well in most applications.

5.3.1 Hierarchical Agglomeration

Clustering is agglomerative in that it begins by treating each sample unit as a group
and then proceeds to combine samples into increasingly larger groups. It is hierar-
chical in that the joining method produces groups that contain smaller groups while
being contained by larger groups. Clustering is polythetic in that joinings are based
on between-group (dis)similarities computed from a set of several measured vari-
ables (in the case illustrated here, species).

The algorithm begins with n individual samples and then chooses the two most
similar samples, joining them into a new group. The next pair of most-similar
samples are then joined, and so on. Early in the process, the groups joined tend to
be individual samples, while later the groups are larger clusters themselves. After n
— 1 joinings there is a single group. Because the solution is hierarchical, groups can
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be defined at various levels ranging from a few high-level groups to a larger number
of low-level groups. The decision about how many groups to retain or interpret is left
to the user (and see below).

Clustering, while quite simple in general outline, depends critically on two
decisions about how the clusters are defined. These decisions are (1) the choice of
distance measure that is used to define the (dis)similarity of groups and (2) the
criteria by which groups are joined when there are multiple samples within a group.

5.3.1.1 Distance Measures

Clustering requires a distance measure to define the pairwise dissimilarity of groups
in the analysis. Any distance measure can be used, although there are preferred
indices for certain kinds of data. For species data, indices such as Bray-Curtis and
similar indices are used commonly. Many of these measures are similar in that they
are concerned with the treatment of joint absences (‘“‘double zeroes”) of species on
samples: we might not want to treat two samples as ecologically similar because
neither supports a particular species. Various transformations or relativizations can
substantially influence the behavior of these distance measures.

For other kinds of variables such as environmental factors, Euclidean or
Mahalanobis distances might be used. Again, issues of data transformations or
relativizations must be considered when selecting an appropriate index.

We considered distance measures in Chap. 3 (Sect. 3.2.4) and again with
distance-based ordinations (Chap. 4, Sect. 4.3.2). Classifications and ordinations
based on the same distance measures can be combined readily, as we will see below.

5.3.1.2 Joining Criteria

To begin, the clustering algorithm computes a sample x sample dissimilarity matrix
and scans this to find the pair of samples that are most similar (least dissimilar).
These samples are then joined into a new group. The process then repeats. A crucial
point of the analysis lies in deciding how to compute the ecological distance between
two groups when each group itself consists of several sample units. This decision
about joining rules defines a variety of clustering algorithms.

A number of joining rules have been proposed and codified in cluster analysis.
Three of these can serve to frame the general issues in joining groups of sample
units. The three methods are nearest neighbor, farthest neighbor, and centroid
linkage (Fig. 5.2). Additional joining rules follow from these conceptual starting
points. McCune and Grace (2002) provide practical guidance on these alternatives.

Nearest-Neighbor Linkage The nearest-neighbor joining rule, also known as
single-linkage, computes the distance between two groups of samples as the mini-
mum sample-to-sample distance for any pair of samples i and j such that these two
samples are in different groups g and /. The minimum distance is found simply by
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________________ centroid

< Thearest

Fig. 5.2 Schematic of three alternative methods for joining groups that consist of multiple samples
in each group. Here, red and green samples are the two groups. The effective distance between the
two groups might be based on the nearest-neighbor sample pair, the farthest neighbors, or the
average distance between samples in each group (i.e., the distance between their centroids, indicated

@,

by “+” signs)

computing the distance between every pair of samples and retaining the minimum of
these values.

Nearest-neighbor linkages tend to produce groups that are “loose” because they
can be joined if any two samples are ecologically close. In particular, this method
often results in chaining, or the sequential addition of single samples to an existing
group (see also Fig. S5.2). In this, a single group might grow by accretion, adding
single samples to the “edges” of the growing cluster. In effect, this contracts the
space around the clusters, making them appear closer together than they actually are
in the original multivariate space.

Farthest-Neighbor Linkage By contrast to nearest-neighbor joining rules,
farthest-neighbor (also known as complete) linkage joins groups by finding the
maximum pairwise distance between two samples, i in group g and j in group .
Again, this maximum distance is found by scanning all pairwise distances for the
two groups.

Not surprisingly, farthest-neighbor linkage tends to produce very compact
clusters of samples. This method does not tend to chain as it joins groups.
Farthest-neighbor linkage tends to produce groups that are similar in size. This
also tends to make the groups appear more different than they are, in effect
expanding the space around the clusters.

Centroid Linkage Single- and complete-linkage joinings are defined by single
pairs of samples (the closest or farthest). It would seem more appropriate to use
information about all of the samples in each group to define the joinings. One way to
do that is to find the centroids of each group and then base joinings on the distances
between group centroids. For species data, the group centroid is the average species
composition of the group and so this makes intuitive sense as a basis for a joining
rule. As might be expected, centroid linkage produces clusters that are intermediate
in size and shape as compared to single- or complete-linkage methods. This
approach is space-conserving, in that the joining rule does not distort the apparent
distances among groups.

Intermediate Linkage An alternative intermediate case entails considering all of
the pairwise distances for samples in two groups and joining the groups if some
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percentage of the pairs meet some threshold distance value. This is known as
intermediate linkage, and in some instances (i.e., for some threshold values), this
is also referred to as average linkage. (This is an unfortunate label, in that the method
does not average the actual links between members of each group.)

Alternative Linkage Methods Sneath and Sokal (1973) presented a two-way
contingency table of methods based on averaging distances between members of
groups to be joined. This contingency defines four average linkage methods,
typically referenced by their rather awkward acronyms UPGMA, WPGMA,
UPGMC, and WPGMC. The base method, often referred to simply as average
linkage, is unweighted, arithmetic average clustering (i.e., unweighted pair-group
method, arithmetic average). Its counterpart UPGMC is based on distances between
centroids of groups, rather than average distances (as in centroid linkage, above). In
the unweighted methods, each sample contributes equally in the distance calcula-
tions. The weighted versions of each method further adjust the group joinings to give
equal weight to each group being joined—in essence, down-weighting individual
members of the larger group.

An important algorithmic consideration in clustering is whether the distances
between higher-level groups (i.e., clusters of the original samples) can be computed
“on the fly” or whether these needed to be recomputed from the original data at each
level of clustering. Methods in which the new distances can be computed are
combinatorial methods (Lance and Williams 1967a, c), which clearly have some
advantages in terms of algorithmic efficiency. Many clustering algorithms can be
implemented in terms of the same generic formula for combining distances among
three groups: parameters can be chosen to generate single-linkage, complete-linkage,
average-linkage, and many other intermediate forms (McCune and Grace 2002;
Legendre and Legendre 2012). This is the algorithm used by most computer
packages. (See Supplement S5 for more on this.)

5.3.1.3 Presentation and Interpretation of Results

Most clustering programs provide two summaries of the process. The first is tabular
and recounts which groups were joined at each cycle of the process. Because there
are n — 1 cycles required to join n samples, this can be a rather intimidating volume
of output. The second, and more intelligible, summary is the dendrogram. This tree
diagram joins the samples hierarchically, beginning with » individual samples at the
bottom of the diagram (sometimes drawn rotated, the “bottom” to the left) and a
single group at the top (right, if rotated). The height at which each joining is drawn
indicates the ecological distance between the groups. Thus, the initial joinings are at
low heights (small distances) and the last joining is at maximum height.

A key step in the interpretation of clustering results is to decide how many groups
there are. This is clearly a subjective decision, because the groups can be selected at
several levels. A simple and graphic way to identify groups is to draw a line across
the dendrogram, which “cuts the branches of the tree” to identify groups at that level
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Fig. 5.3 Dendrogram of a clustering; at the distance levels indicated by the arrows, there are 4, 3, or
2 groups

(Fig. 5.3). For example, the arrows in Fig. 5.3 shows that there may be 2, 3, or
4 groups in the data, depending on where the tree is cut. One way to make this
decision more objective is to insist that the groups be statistically different from each
other. We will return to these statistical tests later, because they apply to other
classifications as well.

Another way to choose the number of groups is to retain those that are ecolog-
ically interpretable (experiments suggest that groups might be statistically different
well beyond any ecological significance). Clusters can be interpreted by examining
the sample units in a particular cluster or the species or other variables that charac-
terize it. Again, because this assessment can apply to any classification, we return to
this later.

5.3.1.4 Complications and Confounding Issues

Clustering, for all its intuitive appeal, can be confounded by a number of issues. An
obvious source of confusion is that the results might change dramatically if one
selects different joining rules. Choice of distance measure can also have an effect,
though usually not as dramatic as the joining rule. There is no “correct” joining rule,
and so this decision may hinge on utilitarian issues in most cases. For example,
single-linkage clusters tend to chain, which does not provide tight clusters. If
chaining results from other linkage methods beyond single-linkage, this probably
means that the data do not form natural groups (i.e., a naturally continuous gradient
would chain under nearly any clustering method).

If clusters are to be interpreted in terms of ecological space (e.g., plotted into an
ordination), then it is important to choose a joining rule that preserves this space as
much as possible. Average linkage methods (including methods approximating this)
are space-preserving; single- and complete-linkage methods are space-distorting.

Because it is hierarchically agglomerative, replicate samples that are essentially
equivalent pose a problem for initial joinings in clustering. In the case of ties (more
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than one pair of samples that are equivalently distant), some arbitrary decision must
be made. One option is to join random pairs of equivalent samples. One consequence
of these initial decisions is that they propagate to higher-level groups; thus, arbitrary
decisions with no real information content are still retained in the highest-level
groups. Fortunately, samples that are very similar should naturally end up in the
same group, so this is not typically an issue.

Clustering is sensitive to outliers but these appear readily in the dendrogram as
long branches with few leaves, very small groups, or single samples that join the rest
of the dendrogram at very high levels. Cutting the tree at a high level then produces a
few “good groups” and a few outliers that are merely distracting (and which can be
discarded). With noisy data, and especially for very large data sets, a nonhierarchical
method can often perform better than clustering. For example, pooling (below) not
only solves the replicate similarity problem by pooling them together, it also pro-
vides a solution to outliers: they are simply ignored (not classified) in many pooling
algorithms.

Finally, clustering can be tedious for very large data sets and inefficient because
generally only the last few high-level clusters are of interest. In these cases, it would
make sense to use a divisive technique instead: that is, starting with one group and
stopping the divisive process when the desired number of groups is reached. For
example, if we have 1000 samples and want three groups, clustering requires
997 cycles while a divisive technique needs two to reach the goal. A useful
alternative here, a compromise, is to first pool the data into small composite samples
and then cluster the composites.

5.4 Nonhierarchical Agglomeration

We have considered clustering (polythetic hierarchical agglomeration) as perhaps
the most popular classification technique in common usage today. Clustering also
provided a conceptual bridge between ordination via nonmetric multidimensional
scaling (NMS) and classification, as both NMS and clustering can proceed from the
same ecological distance matrix. But there are cases, especially with huge data sets,
where clustering is inefficient. In such cases, nonhierarchical methods might be more
appropriate than clustering.

There are two basic approaches to nonhierarchical classification. The first and by
far most common method produces a partition of the samples. A partition of a data
set consists of a number of groups (subsets) such that each sample unit belongs to
one and only one subset. Note that all nonhierarchical methods share the result that
while groups are defined to be as internally homogeneous as possible, there is no
information provided about the relationships among groups, as results from
clustering.

Here we focus on nonhierarchical polythetic agglomeration, beginning with the
most popular approach but diverging to an emerging alternative.
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Fig. 5.4 Schematic of K-means classification with three groups (their centroids indicated by +’s).
In the “build” phase, each sample point is assigned to the closest kernel (groups colored accord-
ingly; here, the black sample indicated by “?”” will be assigned to the closest centroid, in blue). In the
“clean” phase, the kernels are recomputed as group centroids and probably move. The process then
repeats until the kernels stabilize (stop moving)

5.4.1 Partitioning Methods: K-Means Pooling

The most popular nonhierarchical techniques are partitioning methods known var-
iously as pooling (Pielou 1984) or K-means classification (MacQueen 1967). There
are in fact several different algorithms, considered below. Most of the methods share
at least a few elements in common. The general task is to find K groups in
multivariate space such that within-group similarities are maximized (Fig. 5.4).
The result is groups that are as ecologically distinctive as possible. The number of
groups must be specified by the user.

5.4.1.1 Pooling Algorithms

The solution to K-means classification is typically a two-stage process. In the first
pass, K group centroids are identified as reference points in m-dimensional ecolog-
ical space (m the number of species or variables). Each sample unit is assigned to the
group (centroid) to which it is most similar. This is often referred to as the build or
assignment phase of the algorithm. The centroids of each group are then recalculated
as the mean of each variable over all samples in a group. This is the clean phase. The
samples are then reassigned as necessary, again to the nearest centroid (which will
have moved in the clean phase). This iteration continues until the centroids (hence
group assignments) no longer change.

Note that in assigning each sample to the nearest centroid, this approach uses
Euclidean distances. Thus, the objective is to minimize the within-group variances,
estimated as ordinary sums of squared deviations (Euclidean distances). This tech-
nique thus is especially applicable to data sets for which is makes sense to use
Euclidean distances to estimate between-sample dissimilarities.
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5.4.2 Partitioning Around Medoids

An alternative to pooling is partitioning around medoids (PAM) (Kaufman and
Rousseeuw 1990). This approach is similar to K-means pooling but uses “medoids”
instead of centroids (kernels averaged from samples) of the pools to compute
distances. A medoid is a sample that is used as the centroid or exemplar for a cluster.
In PAM, a set of K of the samples are used as medoids, and all samples are assigned
to the nearest medoid. But the objective is different than with K-means pooling. In
PAM, the objective is to minimize the average pairwise dissimilarity from sample to
medoid within each group (and hence, over all groups). This is the build phase. In the
swap phase, each sample in a group is swapped with that group’s medoid, to see if
the within-group distances can be improved (minimized). That is, might another
sample in that group serve as a better medoid? The build and swap phases repeat
until the groups stabilize.

The use of actual samples (medoids) as compared to the (synthetic) group
centroids of K-means pooling is not the most important distinction here. What is
important is that PAM can use any distance or dissimilarity measure, not just
Euclidean distance. In particular, it can use distances more appropriate for species
data (e.g., Bray-Curtis) or for highly correlated environmental factors (e.g., as
Mahalanobis distances). This aligns PAM more readily with NMS ordinations or
clustering, in their ability to use more nuanced ecological distances.

5.4.2.1 How Many Groups?

Again, with pooling (K-means or PAM), the user must decide in advance how many
groups to create. Because the pooling is not hierarchical, the groups cannot be
compared directly from analyses creating different numbers of groups. That is, the
groups in a six-group solution are not directly comparable to those of a five- or
seven-group solution. We turn to the decision on group number in the next section.

5.5 Working with Groups

We have considered a few common techniques for identifying or creating discrete
groups of samples from a heterogeneous data set. Defining groups broaches the
natural question: How valid are these groups? That is, are the groups actually
significantly different statistically? This question leads quite naturally to the further
question, if the groups differ: How are the groups different, or more specifically,
Which variables best distinguish or discriminate among the groups? Here we will
begin with the first issue of testing whether groups differ and then proceed to
consider how they differ.
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Note that these questions do not require that we have previously generated the
groups statistically—the groups might have been defined by other methods, or
administratively, or for management purposes. In any case, it makes sense to assess
the groups statistically.

Note again that these questions are the same as those we asked in the initial
application in this book, species distribution modeling. In that case, we had only two
groups (habitat or not). Here it will become obvious that the same questions apply to
the multiple-group case, but that there are additional questions we might ask of
groups defined from multivariate ecological data.

5.5.1 Are the Groups Different?

The basic question we wish to answer is: Are these groups different? This is a vague
question that needs to be rephrased more specifically for testing. One way to
rephrase the question is: Are samples within the same group more similar than
samples from different groups? This is equivalent to contrasting the among-group to
within-group variability in the data set. This test is essentially a multivariate F-test, a
contrast of among- to within-group variances. Indeed, a MANOVA F-test would be
a reasonable solution to the question of group differences—if we could meet the
assumptions of the parametric test. This is difficult with ecological data, in general.
In the cases developed here, the groups are based on distances or dissimilarities, and
we know that these are not independent (Chap. 3) and so cannot be assessed with
parametric tests.

Alternative nonparametric methods are available. Perhaps the most straightfor-
ward is simply a nonparametric version of MANOVA, with the test statistic based on
permutation (Anderson 2001; Oksanen et al. 2021). Even this approach suffers from
imbalanced groups (e.g., from very different samples sizes over the groups), an issue
with analysis of variance in general. Other approaches differ in how they compute
among- versus within-group homogeneity (see Supplement S5). Often, these tests
area based on ecological dissimilarities or distances. The approaches vary in the
details of the test statistic, but each is concerned with among- as compared to within-
group dissimilarities. One general approach is developed below.

5.5.1.1 Mantel’s Test

Mantel’s test is a correlation between distance matrices (Mantel 1967). The Mantel’s
test is quite flexible and can be used here as a general tool for testing group
differences.

In this instance, a dissimilarity matrix can be defined as a contrast (or design)
matrix for groups, coding distance as “1” if two samples are in different groups or
“0” if they are in the same group. Mantel’s test conducted between this group
contrast matrix and an ecological distance matrix (e.g., the Bray-Curtis index) tests
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the hypothesis that among-group distances are large relative to within-group dis-
tances. In this case, the one-tailed test is of interest because larger among-group
differences are the expectation. The test statistic is evaluated by permutation (Goslee
and Urban 2007), as with the permutation version of MANOVA. In this application,
the test would be repeated for multiple numbers of groups—different cut levels of a
cluster dendrogram or separate classifications using pooling.

5.5.1.2 Statistical and Ecological Significance

The classifications we have just examined here all create groups by maximizing
among-group differences or (equivalently) minimizing within-group differences. It
should come as no great surprise, then, that these groups are usually statistically
different from one another. And so, this test of significance, while important as a box
to be checked, is typically not a difficult test to pass. The question is, rather, of
several alternative classifications—all of which are statistically significant—what is
the appropriate number of groups to use?

One way to address this is to repeat the statistical analysis for a range of numbers
of groups. This might be multiple cut levels of a cluster dendrogram, or a set of
poolings with different numbers of groups. Plotting the test statistic (here, the Mantel
correlation, but any comparable statistic would also work) against number of groups
would typically reveal a curve that might suggest a level that works best for that data
set, corresponding to a peak in the test statistic (Goslee and Urban 2007; Borcard
et al. 2011).

In a best-case scenario, this curve is monotonic and peaks at an intermediate
number of groups. This can be interpreted intuitively relative to the among- versus
within-group contrast of the test statistic. With too few groups, the internal variabil-
ity increases so the within-group dissimilarity is too high, while with too many
groups, the among-group dissimilarity is too low; both cases reduce the among- to
within-group contrast. The best case is an intermediate number of groups. A PAM
classification of the Sierran tree data featured in Chaps. 3 and 4 exhibits this
relationship (Fig. 5.5). In this case, the species data were analyzed using the same
extended Bray-Curtis distances used previously in the NMS ordination (Sect. 4.3.2),
and the pooling was conducted for a range of 2—10 groups. Note that at all levels, the
tests are highly significant (P < 0.001) and the test statistics are actually quite
similar; the “best” number of groups is six but any choice from two to seven
would be reasonable.

In practice, more groups will often be better (statistically) than fewer groups, but
too many groups can degrade the usefulness of the solution. In this, this decision is
similar conceptually to choosing an appropriate number of axes for an ordination
(recall Chap. 4, Sect. 4.3, especially Figs. 4.3 and 4.7): More axes will generally be
better statistically but less useful practically. The aim is to find a workable and
justifiable compromise.
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Fig. 5.5 Mantel’s test (see text) for a classification using PAM, illustrating the among- to within-
group contrast in extended Bray-Curtis distances used in the classification of tree species abun-
dances for samples in Sequoia National Park in the Sierra Nevada in California. A six-group
solution is indicated

5.5.2 How Are the Groups Different?

This question of among-group differences can be phrased in several ways,
depending on the nature of the data. In particular, we can adopt two different
perspectives on group differences: (1) Given groups defined on a set of variables,
which of these variables actually distinguish the groups? For example, if we cluster
typal communities based on species composition, which species are most character-
istic of each community? Similarly, if we define habitat types based on biophysical
environmental variables, which of these variables actually defines the various types?
Alternatively: (2) Given groups defined on a set of variables, which of another set of
variables best captures these differences? For example, if we define community
types based on composition, which environmental variables best account for these
communities? Reciprocally, if we define habitat types on biophysical variables, are
there species that show affinities for each of the various types? These two applica-
tions lead to different methods, reflecting the numerical vagaries of species abun-
dances as compared to environmental scalars.

Any evaluation of groups should begin with simple descriptive statistics: sum-
marizing the average species composition of the groups (Table 5.2) or their averages
on environmental factors (Table 5.3). This applies for groups defined on either
species composition or environmental factors. Inspection of these tabular summaries
should suggest an initial interpretation of the groups ecologically.

As might be expected, there are many techniques for comparing groups. Some of
these are detailed in Supplement S5. In the next sections, we illustrate two such
approaches, using the Sierran forest community types classified using PAM. In the
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Table 5.2 Average species composition for six groups classified using PAM (see text) (species
codes in Table 3.5)

Species Group 1 2 3 4 5 6

ABco 38.16 11.94 2.71 0.00 8.43 0.00
ABma 0.64 0.00 67.03 15.71 7.717 17.24
CAde 1.39 16.52 0.00 0.00 0.64 0.00
COnu 0.05 0.15 0.00 0.00 0.00 0.00
Plco 0.00 0.00 0.00 2.87 0.00 52.10
Plje 0.41 0.00 0.00 0.00 37.28 0.00
Plla 13.39 9.09 0.39 0.00 0.88 0.00
Plmo 0.00 0.00 3.28 106.36 0.00 16.82
Plpo 1.03 9.68 0.00 0.00 0.00 0.00
QUke 0.35 6.02 0.00 0.00 0.01 0.00
SEgi 60.86 0.00 0.00 0.00 0.00 0.00

Tabled values are average basal area (m*ha™") per species. Species codes are in Table 3.5

Table 5.3 Average environmental conditions for the six forest communities (see text) (environ-
mental variables in Table 3.6)

Factor Group 1 2 3 4 5 6
Elevation | 2003.1 1696.9 2523.2 2867.0 2189.9 2817.7
Slope 18.14 23.91 15.86 25.13 15.54 13.00
TAspect 0.08 —0.04 —0.19 0.01 0.28 0.82
TSI 0.00 0.02 0.02 0.02 0.01 0.01
xLitter 8.47 8.03 4.68 6.35 5.82 4.68
xDepth 81.48 78.04 50.97 24.46 40.89 36.64
sDepth 23.37 20.96 30.55 20.23 18.78 18.68
pH 5.56 5.45 491 4.34 4.67 4.37
C 3.28 3.36 4.28 5.54 4.02 4.02
C.N 24.15 22.18 31.11 26.03 24.54 29.15
P 109.59 58.90 69.44 53.50 71.13 100.83
ECEC 8.99 10.17 6.28 4.53 4.70 4.09
Clay 1.06 222 1.16 2.06 0.98 1.10

Environmental variables are described in Table 3.6

first case we ask, which species best characterize each of the groups? The approach is
indicator species analysis. In the second illustration, we ask which environmental
variables best distinguish these forest types. In this, we use a classification and
regression tree (CART), exactly as developed as a species distribution model in
Chap. 2 (Appendix A2.2).
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5.5.2.1 Merging Classification and Ordination

Classified groups are generated without any reference an interpretative framework
beyond the other groups. Summarizing groups in terms of the classifying or ancillary
data can help interpret the groups. But it can be quite revealing to display a
classification in an ordination. This can be done with any classification and any
ordination, simply by color- or symbol-coding the samples by group in a plot of the
ordination. But this is especially compelling with classifications done by clustering
or PAM, embedded in an NMS ordination. This is because the analyses all proceed
from the same distance matrices.

In the case of the Sierran forest community types, plotting these into the
corresponding NMS ordination (Figs. 4.9, 4.10, and 4.11) emphasizes the strong
elevation gradient while also suggesting the separation of forest types at lower and
mid-elevations (Fig. 5.6).
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Fig. 5.6 A joint biplot of an NMS ordination (the same as Fig. 4.11), with groups classified via
PAM overlaid. Species names are colored according to the group in which they reach their
maximum abundance (see Table 3.5 for species codes)
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While this illustration features the PAM partitioning, it can be especially useful to
explore a clustering in an ordination. Because the clustering is hierarchical (nested),
viewing the clusters corresponding to various cut levels in the dendrogram shows
precisely how each group is merged or divided from lower or higher levels in the
tree. For example, a clustering of the Sierran forests reveals the relationships among
two groups (lower/mid and higher elevation, Fig. 5.7a) and three (Fig. 5.7b, splitting
the Jeffrey pine community (Plje) off at middle elevations). At four groups, the
lodgepole pine (PIco) group separates from other higher-elevation types (Fig. 5.7¢),
and at five groups the lower-elevation group splits the white fir (ABco) group from
the lower elevation and drier forests characterized by Ponderosa pine (PIpo) and
incense-cedar (CAde) (Fig. 5.7d). Finally, at level 6, the red fir (ABma) group splits
off at upper elevations (Fig. 5.7e). At six groups, the classification is very similar to
the PAM groups illustrated in Fig. 5.6.

5.5.2.2 Identifying Compositional Groups: Indicator Species

One approach to distinguishing among groups is based on the notion of indicator
species (Dufréne and Legendre 1997). Their method is designed for species com-
positional data. The goal is to identify those species that have shown high fidelity to
a particular group and, as such, can serve as indicators for that group. A good
indicator species would occur with high relative abundance and high frequency in
its group while simultaneously not occurring in other groups.

Dufréne and Legendre’s (1997) method combines the notions of local abundance
and frequency into a single indicator value (see Supplement S5 for details). They
compute the relative abundance of each species in each group and then also the
relative frequency of each species in each group. The indicator value for each
species for each group is the product of its relative abundance and relative frequency.
Indicator values range from 0O to 100, with 100 representing a perfect indicator. A
perfect indicator species would be abundant in every sample of its type (group), and
never occur in a sample from a different group.

The indicator values are tested for statistical significance by permutations of the
group membership assignments in the original data. This test of significance is
important, because rare species will often be appealing as indicators—but their
low overall frequency tends to render them unreliable (not significant) as indicators.

Indicator species can be a powerful aid to interpreting compositional groups, as
they are the species that best highlight among-group differences. Indicators also can
be used to predict group membership for new samples, often providing for efficient
keys in the field.

For the Sierran forest communities classified using PAM, ISA finds significant
indicators for all six groups (Table 5.4). This analysis is via the implementation of
ISA in R (de Caceres and Legendre 2009). In the table, elements A and B are strict
interpretations of the general notion of site fidelity. For species k and sample i in
group g, A is the conditional probability that sample i is in the indicated group g,
given that the focal species k is present on the sample. B is the conditional probability
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Fig. 5.7 Illustrations of a sequence of clusterings of the Sierran forest data, from two to six groups
(a—e). Successive splits are shown as new symbol colors; see text for further explanation. The
six-group solution is very similar to the PAM classification shown in Fig. 5.6
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Table 5.4 ISA results for the six forest communities identified using PAM (species codes in
Table 3.5)

Species Group A B v P <~
ABco 1 0.63 1.00 0.79 0.0001
ABma 2 0.62 1.00 0.79 0.0001
CAde 6 0.89 1.00 0.94 0.0001
COnu 6 ns ns 0.37 0.2
Plco 3 0.95 1.00 0.97 0.0001
Plje 4 0.99 1.00 0.99 0.0001
Plla 1 0.56 0.83 0.90 0.01
PImo 5 0.84 1.00 0.92 0.005
Plpo 6 0.90 0.45 0.64 0.005
QUke 6 0.94 0.86 0.90 0.0001
SEgi 1 ns ns 0.41 0.1

See text for an explanation of table elements

Table 5.5 Back classification of the six Sierran community types using indicators from ISA (spe-
cies codes in Table 3.5)

ABco ABma Plco Plje PImo PlIpo
ABco 0.639 0.214 0.000 0.000 0.000 0.000
ABma 0.000 0.500 0.000 0.000 0.000 0.000
Plco 0.000 0.000 1.000 0.000 0.125 0.000
Plje 0.028 0.000 0.000 1.000 0.000 0.000
PImo 0.000 0.286 0.000 0.000 0.875 0.000
PIpo 0.333 0.000 0.000 0.000 0.000 1.000

Table values are proportions correct. Rows are predictions; columns are the training data. Group
names correspond to species labels in Fig. 5.6

that species k is present in sample i, given that the sample is a member of that
group g.

This is a rather simple system and some of the groups are nearly monospecific
types, so it is perhaps unsurprising that some of the indicators are quite strong (e.g.,
lodgepole pine, Plco, for the “lodgepole pine community,” group 3). By contrast,
Ponderosa pine, Plpo, is not a perfect indicator for what many think of as the
“Ponderosa pine community,” because it is not reliably present in its type. Pacific
dogwood (COnu) and giant sequoia (SEgi) are not common enough to serve as
reliable indicators for any group (even though almost all of their occurrences are in
group 1).

The indicators can be used to predict group membership. In this instance, they
were used to back-classify the training data (a model verification, as these are not
independent data). The indicators predict group membership with 78% accuracy
overall, with some groups predicted perfectly while others had misclassifications to
ecologically similar groups (Table 5.5).
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5.5.2.3 Identifying Compositional Groups: Environmental Predictors

Having interpreted groups in terms of the species that generated them, we might also
ask whether species compositional groups can be distinguished in terms of environ-
mental predictors. This is essentially the multigroup extension of habitat or species
distribution models (Chap. 2), and some of these modeling techniques are readily
extended to the multiple-group case. Because we have already considered each of
these approaches as habitat models, we will focus here on their multinomial exten-
sions. In this instance, we focus on a classification and regression tree (CART)
model (see Appendix A2.2). Supplement S5 also describes a couple other tools for
this task.

A classification tree is a special case of a class of models, regression trees, that
attempt to partition a data set by recursively explaining subsets of the data (Breiman
et al. 1984). In a classification tree, the response variable is categorical, and in this
case, the variable assigns group membership. The predictors may be continuous
(interval scale) or categorical variables. CART analysis of these data attempts to
separate the groups by subsetting the groups and accounting for among-group
differences in terms of the predictor variables. As we have already considered
CART models in some detail, it is appropriate here to consider only the extension
of these models to the multinomial case.

In the case of multiple groups, the procedure of CART is exactly the same as in
the binomial case. The aim is to produce “pure” terminal leaves, and each of these
will be labeled as a single group. As with classification trees, multiple branches
might lead to the same group, allowing for alternative pathways and contingencies.

In this instance, the classification tree (using R package rpart, Therneau and
Atkinson 2022) produces a relatively simple tree under tenfold cross-validation
(Fig. 5.8). Even so, the tree suggests a variety of environmental settings that support
the white fir forest type (ABco), while other forest types are more localized
environmentally.

The CART model can be used to verify its classification success by back-
classifying the data used to create the model. This generates a confusion matrix
analogous to Table 5.5 but this time summarizing the environmental associations of
the groups (Table 5.6).

The overall classification success (the average of the diagonals of Table 5.6) is
92.8% correct. This underscores the strong environmental sorting of the tree species
in this system: the compositional types are actually more readily predicted from
environmental factors than by the species data that created the groups.

5.5.3 Reporting

Clearly, classification can generate a rather intimidating volume of information,
including a wealth of figures and tables. Some of these will depend on the particular
technique, but all applications will share a common standard of reporting. These
should include:
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names, correspond to the labeling in Fig. 5.6 (species codes in Table 3.5; environmental variables in

Table 3.6)

Table 5.6 Confusion matrix fora CART model of six forest types created using PAM, as predicted
using environmental factors (species codes in Table 3.5)

ABco ABma Plco Plje PImo PlIpo
ABco 0.917 0.071 0.000 0.000 0.000 0.091
ABma 0.000 0.929 0.000 0.000 0.000 0.000
Plco 0.000 0.000 0.750 0.000 0.000 0.000
Plje 0.056 0.000 0.000 1.000 0.000 0.000
PImo 0.000 0.000 0.250 0.000 1.000 0.000
PIpo 0.028 0.000 0.000 0.000 0.000 0.909

Rows are model predictions; columns are data. Group names correspond to coloring and labels in

Fig. 5.6

Data preparation, any relativizations or transformations, and results of EDA For a
classification based on ecological distances:
Choice of distance measure and whether the distances were extended because of

saturation



References 151

For any classification:

How many groups were used, and how this was decided (including test statistics
as appropriate)

Descriptive statistics on the groups (e.g., mean species composition, mean envi-
ronmental conditions per group)

Details and results from any further tests among groups, e.g., indicator species
analysis, CART, or other model of environmental discrimination among groups

If the classification is merged with an ordination:

Details on the ordination (see Chap. 4, Sect. 4.3.3)
Biplot, joint plot, or joint biplot with classified groups identified by color or
symbol codes

5.6 Further Reading

Classification, in general, and clustering, in particular, are venerable techniques and
much of the definitive literature is now rather old but still relevant (e.g., Lance and
Williams 1967a, b, ¢, d; Gower 1967; Goodall 1973; Gauch 1982; Pielou 1984;
Romesburg 1984). Because these methods are in common use, any textbook on
multivariate methods will cover most of the techniques mentioned in this chapter
(e.g., Manly 2004). As a very brief introduction to this very large literature, McCune
and Grace (2002) cover some of these techniques but with an emphasis on clustering
and a focus on ecological decision points and interpretation. Legendre and Legendre
(2012) cover most of the techniques discussed here (and some that are not), with a
more comprehensive perspective on the statistics and ecology of classification.
Kaufman and Rousseeuw (1990) took a fresh look at classification and devised
new techniques for many of the available tools. Their software (package cluster in R,
Maechler et al. 2022) includes functions and support for clustering, partitioning
around medoids, polythetic divisive analysis, fuzzy classification, association anal-
ysis, and a multistage method for classifying huge data sets such as those generated
via remote sensing

References

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral J
Ecol 26:32-46

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees.
Wadsworth and Brooks/Cole, Monterey

Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and
statistical inference. Ecology 90:3566-3574



152 5 Classification

Dufréne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible
asymmetrical approach. Ecol Monogr 67:345-366

Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press,
Cambridge

Goodall DW (1973) Numerical classification. In: Handbook of vegetation science, vol 5. W. Junk,
Hague, pp 575-615

Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analyses of ecological
data. J Stat Softw 22:7

Gower JC (1967) A comparison of some methods of cluster analysis. Biometrics 23:623-637

Hill MO (1979) TWINSPAN—a FORTRAN program for arranging multivariate data in an ordered
two-way table by classification of the individuals and attributes. Section of Ecology and
Systematics, Cornell University, Ithaca

Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis.
Wiley, New York

Lance GN, Williams WT (1967a) Mixed-data classificatory programs. I. Agglomerative systems.
Aust Comput J 1:15-20

Lance GN, Williams WT (1967b) Mixed-data classificatory programs. 1. Divisive systems. Aust
Comput J 1:82-85

Lance GN, Williams WT (1967c) A general theory of classificatory sorting strategies. I. Hierarchi-
cal systems. Comput J 9:373-380

Lance GN, Williams WT (1967d) A general theory of classificatory sorting strategies. II. Clustering
systems. Comput J 10:271-277

Legendre P, Legendre L (2012) Numerical ecology, 3rd English edn. Elsevier, Amsterdam

Lillesand TM, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn.
Wiley, New York

Macnaughton-Smith P, Williams WT, Dale MB, Mockett LG (1964) Dissimilarity analysis: a new
technique of hierarchical sub-division. Nature 202:1034-1035

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In:
Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, vol 1. University of California Press, Berkeley, pp 281-297

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2022) cluster: cluster analysis basics
and extensions. R package version 2.1.4. https://CRAN.R-project.org/package=cluster

Manly BFJ (2004) Multivariate statistical methods: a primer, 2nd edn. Chapman and Hall, London

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer
Res 27:209-220

McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden
Beach

Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymus P, Henry M,
Stevens H, Wagner H (2021) vegan: community analysis package. R version 1.17-11. http://
CRAN.R-project/org/program=vegan

Pielou EC (1984) The interpretation of ecological data: a primer on classification and ordination.
Wiley, New York

Romesburg HC (1984) Cluster analysis for researchers. Lifetime Learning Pubs (Wadsworth),
Belmont

Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical
classification. W.H. Freeman, San Francisco

Therneau T, Atkinson B (2022) rpart: recursive partitioning and regression trees. R package,
version 4.1.19. https://CRAN.R-project.org/package=rpart

Williams WT, Lambert JM (1959) Multivariate methods in plant ecology. I. Association analysis in
plant communities. J Ecol 47:83—-101


https://cran.r-project.org/package=cluster
http://cran.r-project/org/program=vegan
http://cran.r-project/org/program=vegan
https://CRAN.R-project.org/package=rpart

Chapter 6 )
Inferences on Spatial Data Shex

Abstract Ecological data typically are spatially structured, or autocorrelated. Auto-
correlation might be due to spatially structured environmental constraints (e.g.,
topographic controls on soil moisture). Autocorrelation can also arise from local
interspecific interactions (e.g., predator/prey relations, competition), or spatial pro-
cesses such as dispersal. Spatial structure might also be a legacy of past spatial
events (e.g., disturbances); this history is often unobserved. There are two
approaches to dealing with autocorrelation in inferential models. The first is to
avoid it, by sampling deliberately (Chap. 1). Here we adopt the alternative approach,
of embracing autocorrelation as a feature of interest in ecological data. The focus
here is on multivariate regression, in which we model species abundances in terms of
multivariate as well as spatial predictors. The workflow includes pre-processing of
spatial data, the analysis itself, and post-processing the results for interpretation and
communication. A general summary of the results partitions the variation in species
abundances into that explained by the environmental variables as compared to the
spatial predictors while also accounting for the spatial structure in the environmental
variables themselves.

6.1 Introduction

In previous chapters we have collected landscape-scale data, conducted exploratory
data analysis, and summarized the general patterns in the data using ordination and
classification as descriptive techniques. In this chapter we extend the descriptive
techniques toward explanation, to attempt to explain why we see the patterns
observed in the data.

In particular, we will wish to estimate how much of the variation in patterns in
species abundance can be explained by environmental predictors. As with species
distribution modeling (Chap. 2), this effort will be confounded by the correlations
among environmental variables. To this, we will add the complication that environ-
mental variables will be spatially structured. In landscape-scale studies, we also will
have locations for the samples, as geospatial coordinates, and so can insert explicit
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spatial information into the analyses. This invites analyses that can attend spatial
autocorrelation.

There are two possible responses to autocorrelation (Legendre 1993; recall
Chap. 1, Sect. 1.3.3). One is to avoid it, as autocorrelation violates the assumption
of sample independence that underlies parametric statistics. In this sense, the effect
of autocorrelation is to bias the degrees of freedom to be overly generous, because
each (autocorrelated) sample does not really represent a “whole” observation to the
analysis. The simple solution to this is to sample in such a way as to avoid
autocorrelation, by spacing samples to beyond the range of autocorrelation as
estimated in a pilot study. An after-the-fact solution entrails adjusting the degrees
of freedom downward to account for the partial dependences of samples (Legendre
and Legendre 2012; Dale and Fortin 2014). The second response to autocorrelation
is to accept it as an interesting feature of the data—to embrace space. This latter
approach is a hallmark of landscape ecology and is adopted in this chapter.

In this chapter, we infuse spatial considerations into some analyses we have
already considered while also introducing some new tools. We begin with an
overview of spatial autocorrelation, to make sure we are grounded in the basic
issue. We then revisit two approaches from previous chapters, introducing explicitly
spatial perspectives. First, we revisit Mantel’s tests as a spatial analysis. Then, we
introduce spatial predictors into constrained ordinations, using explicitly spatial
constructs derived from a matrix of distances among samples. It will become
obvious, perhaps, that this adds a new layer of nuance to ecological analyses. How
to best do this has been an active topic of methodological innovation and debate.

In terms of the overall workflow that frames this book (Preface, Fig. 2), the task of
modeling spatial structure is on the more research-oriented end of things. But this
information can be important in less research-intensive applications in landscape
management. We all appreciate that nature is patchy, and conservation practice often
prioritizes places recognized as special. The question here is “Why are these places
special?”. Is it due to unusual environmental conditions? Legacies of past events? A
confluence of migratory or dispersal corridors? Spatial analysis can help sort through
the possibilities.

The possibility that a site might be compelling because of local environmental
conditions as compared to (or in addition to!) local dispersal or connectivity will
invite us to assess the relative importance of these. This, in turn, will force us to
decide how to reconcile these features when they conflict as conservation targets—
that is, when we need to decide which is more important, habitat quality or
connectivity. We turn to this decision process as part of site prioritization in Chap. 8.
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6.2 Context: Spatial Autocorrelation

Embracing spatial structure broaches what can be a vexing analytic and inferential
problem for ecologists. Spatial autocorrelation' can be caused in a few general ways
(Wagner and Fortin 2005; Legendre and Legendre 2012; Dale and Fortin 2014). The
first is spatial environmental dependency, as would be induced by an environmental
variable that itself shows strong spatial structure. For example, a plant species that is
associated with higher soil moisture available at low slope positions will be spatially
structured by the natural scaling of terrain (Urban 2023, Chapters 1 and 4). The
second cause is purely spatial process, such as local biotic interactions (competition,
predator/prey dynamics), dispersal, or contagious disturbance (e.g., fire) or stressors
(e.g., pests, disease). For example, primary seed dispersal by plants tends to occur at
distances that are a few multiples of plant height, and animal dispersal is also
characteristically scaled by body size and mobility; so we might expect dispersal
to influence species distributional patterns at characteristic scales. Finally, spatial
structure might be observed as the legacy of previous events such as disturbances,
pest outbreaks, land use practices, the creation (or removal) of dispersal barriers, or
past climate.

The inferential problem arises because we rarely measure spatial processes
directly, and long-ago spatial events are typically unobserved. For example, we
might like to infer the influence of dispersal (or other spatial process) as spatial
structure that is residual after accounting for spatial dependencies induced by
environmental variables. But we cannot do this logically, because the residual spatial
structure might be due to an unmeasured environmental variable or unwitnessed
event. We can never truly resolve this logical uncertainty.

In this section, we begin with the conceptual problem of describing or summa-
rizing spatial structure in a single measured variable. This invites a few analytic
approaches, which we consider only as a means to frame the general issue. From the
univariate case, we will move on to multivariate approaches.

6.2.1 Descriptive Models of Spatial Structure

The field of geostatistics (Haining 2003) often is concerned with interpolating
information from known (measured) locations to other points, typically to fill in
(interpolate) a mapped surface. Geostatistical theory targets regionalized variables,

1Legendre and many colleagues reserve the term ‘“auocorrelation” for local biotic processes and
spatial legacies of these, as compared to environmental dependencies. They prefer “spatial corre-
lation” as the general term. While I do not disagree with this, I suspect that “autocorrelation” is used
quite generally by many of us. I will use this term to refer to spatial structure in general, but I will try
to be explicit about the presumed causes (environmental dependency, spatial process, historical
legacy).
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Fig. 6.1 A variable (brown line) as a combination of smooth trend (red line) and local deviations
from this trend

which are measurements over surfaces. A working definition of a regionalized
variable y measured at location i is:

y(@)=f@) +s() + ¢ (6.1)

where f is a forcing or trend, s is local spatial structure, and ¢ is residual error
(presumed normal and independent). We distinguish trend and local spatial structure
on the basis of spatial scale: trend is larger-scale, while local structure is finer-
grained. Importantly, this approach does not distinguish environmental dependen-
cies (e.g., ecophysiological constraints) from purely spatial processes (e.g., dispersal
or contagious disturbances); the task is merely to describe the structure. Trends are
often fitted as simple linear regressions on spatial coordinates (i.e., lat/lon or other
coordinate systems), while local structure is estimated using a correlogram (in spatial
statistics) or semivariogram (in geostatistics).

As an example, consider again the illustration of local topography nested in a
larger-scale elevation gradient (Chap. 1, Fig. 1.8). While this is presented in eco-
logical terms, a description of the pattern would see only the larger trend and local
spatial structure: a straight line and local deviations from this (Fig. 6.1).

Our task here is to capture that structure in quantitative terms.

6.2.1.1 Statistical Models of Spatial Structure

Analytically, the spatial structure illustrated in Fig. 6.1 can be captured in either of
two common forms. From spatial statistics (again, recall Chap. 1, Sect. 1.3.3), a
common estimate of autocorrelation takes the form:
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(n—1) ZZ

for samples i # j. This is the estimator for Moran’s I (Moran 1950; Legendre 1993;
Legendre and Fortin 1989). Here, the measurements at locations i and j are converted
into z-scores (deviation from the mean, divided by the standard deviation) to rescale
the measurements. The w term is an indicator variable or weight that takes on a
value of 1 if two samples are within some specified range of distances apart (i.e., in
that distance class); else it takes on a value of 0. Through this indexing, the formula
provides an estimate of autocorrelation for each distance class d. The term W is the
sum of the indicator weights (sample size) in each distance class, which along with
the overall sample size n rescales the index to vary on the range [—1,1], just as the
familiar Pearson correlation coefficient. A plot of autocorrelation versus distance
class is a correlogram.

The field of geostatistics (mostly at home in engineering) uses an approach to
index scaling in terms of the dissimilarity of measurements as a function of separa-
tion distance. Translating from the somewhat different notation of geostatistics into a
format consistent with autocorrelation (above), semivariance (gamma) is estimated:

rld) = 537 30> wili—x)° (63)

where the indicator variable w acts as in Moran’s I (Eq. 6.2) to subset sample pairs by
distance class and W is the number of sample pairs in distance class d. Dividing by
two rescales the index so that it converges on simple variance as autocorrelation
decreases to 0.0. If semivariance is divided by simple variance, y converges on a
value of 1.0 as autocorrelation decreases to O—a convenient way to convert esti-
mates from varying measurement scales to a common basis. A semivariogram (or,
simply, variogram) plots dissimilarity as a function of separation distance.

With ecological data, correlograms and variograms tend to be monotonic and
often steeply so, indicating spatial structure over a narrow range of separation
distances. The two approaches, correlograms and variograms, essentially mirror
each other: a correlogram (a measure of similarity) decreases with increasing
distance, while a variogram (a measure of dissimilarity) increases with distance.

In a simple world, local spatial structure (term s in Eq. 6.1) would take the form of
a correlogram or variogram with relatively localized, fine-grained structure, while
the forcing or trend (term /) would be much larger scale or even (ideally) linear. It is
easy to make this example (Fig. 6.1 as represented in Eq. 6.1) arbitrarily complicated
by choosing various forms for the trend and local structure. If we fit the trend as
linear but it is in reality nonlinear, then we essentially reassign some of the trend to
the local structure. Reciprocally, if we model the trend with a nonlinear polynomial,
we might capture some of the local structure in the forcing f.
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Finally, if we ignore the local spatial structure and model only the trend (e.g., as a
linear forcing), we would expect finer-scale spatial structure in the residuals of the
model (transferring information from s to the error term ¢ in Eq. 6.1). Of these
options, only the last one—the case with autocorrelated residuals—is a “bad”
regression model because its residual errors are not independent. By convention,
we would want to account for local structure in order to estimate a model with
independent errors. (It also is legitimate to fit a nonspatial model with autocorrelated
errors—as long as the spatial structure is accounted somewhere.) Any other
approach, in which variability is transferred between the forcing and local structure
depending on the shape and scale of the model terms, might be equivalently useful as
a description of the data.

In the limit, what we would like to have is a set of model terms that are scale-
specific, in effect decomposing the spatial structure of the response variable into
variability explained at multiple component scales:

y(l) =51 (l) + Sz(i) + S3(i) + S4(i) +...+e (64)

where the structure functions s are identified at a sequence of discrete scales and the
residual errors are random.

One method that does explicitly this is spectral analysis (Renshaw and Ford
1984). In this, the data are summarized in terms of sinusoidal forms of varying
wavelengths (or, reciprocally, frequencies)—that is, scales. The analysis estimates
the proportion of total variance in the data that is expressed at different scales.
Wavelet analysis (Bradshaw and Spies 1992; Keitt and Urban 2005; Dale and Fortin
2014) is another method that provides this scale-specific decomposition of the data.
Again, these models are typically descriptive in that they merely describe the scales
over which the response varies (but see Keitt and Urban (2005) and Dale and Fortin
(2014) for inferential applications). We will return to this notion of scale-specific
deconstructions of data later in this chapter.

6.2.2 Spatial Explanatory Models with Environmental
Predictors

Complications arise when we decide to interpret the spatial structure in terms of
explanatory agents. For example, we might expect plant species distribution to
respond to a set of environmental constraints that are themselves characteristically
scaled, from large-scale gradients such as elevation to fine-scale factors such as those
governed by local topography or soils.

Correspondingly, empirical examples of correlograms and variograms show a
range of scales of autocorrelation, ranging from truly local structure observed over
meters to tens of meters to large-scale gradients that manifest as linear trends
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Fig. 6.2 Variograms for elevation, (transformed) slope aspect, and a topographic convergence
index (TCI) for Sequoia National Park, in the Sierra Nevada of California. (Modified from Urban
(2023), itself redrawn from Urban et al. (2000); permission conveyed via Copyright Clearance
Center, Inc.)

(Legendre and Fortin 1989; Urban et al. 2000; Legendre and Legendre 2012; Urban
2023, Chapter 4) (Fig. 6.2).

This approach would result in a familiar multiple regression model, including
environmental predictors (elevation, slope, hillslope position, topographic conver-
gence, soil properties, and so on) for the model terms:

(@) =bo + b1x1 (i) + baxa (i) + baxs (i) + ... + ¢ (6.5)

where the x’s are environmental predictors and the b’s are fitted coefficients. This
model emphasizes the explanatory power of environmental constraints or
dependencies.

One approach to partitioning environmental constraints or dependencies is to
model these effects as with Eq. (6.5) and to look for spatial structure in the residuals
of the model. Autocorrelated residuals suggest spatial information in the dependent
variable that is unrelated to the measured environmental variables. One way this
might arise is due to a pure and unmeasured spatial process such as dispersal or
contagious disturbance. That is, one inference we might make about spatial process
is that it is manifest in the residuals of an explanatory model invoking environment: a
partial regression model.

Unfortunately, again, spatial process is not the only way to generate a spatial
residual from a model based on environmental constraints. It is also possible that we
simply omitted an important environmental constraint or missed a historical legacy,
and so the residuals reflect this omission. A crucial logical limitation in ecology is
that we cannot know what causes a spatial residual because the cause is unobserved.

What we can do, however, is to model the environmental constraints to the best of
our ability and then to describe the spatial structure in the residual variation as
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precisely as possible in terms of the scale(s) at which this is expressed (Levin 1992;
Mclntire and Fajardo 2009). Another problem arises, of course, in that some of the
environmental predictors in Eq. (6.5) might well correspond to the scales of the
spatial descriptions in Eq. (6.4). The solution is to merge these two approaches,
which we will do later in this chapter.

6.2.3 Univariate Models with Spatial Structure

Models that incorporate spatial structure along with environmental predictors are
very well developed in several disciplines. These include various forms of
autoregression as used in spatial statistics and the family of kriging methods used
in geostatistics.

In spatial statistics, various forms of autoregression models pose the expected
value at a location i, y(7), in terms of the response variable in the neighborhood of i.
That is, the response variable is presumed to be autocorrelated. By contrast, in a
conditional autoregression (CAR), the value predicted at location i depends on the
value of y at i but also on a set of environmental predictors at that location: the effect
of the environment is conditional on the state of the response variable (Lichstein
et al. 2002).

In the field of geostatistics, the corresponding models are forms of kriging. In the
simplest case, ordinary kriging, the model is essentially that suggested by Eq. (6.1)
but fitted in two steps. The trend is fitted first, and residuals are extracted from this fit.
The local spatial structure is then estimated for the detrended residuals. In universal
kriging, the trend and local structure are fitted at the same time. Finally, in universal
co-kriging, the trend and local structure are fit as well as the effects of a set of (here,
environmental) covariate predictors.

These models are developed in most statistical texts (e.g., Haining 1993, 2003;
Cressie 1993; Plant 2012). Dale and Fortin (2014) and Fletcher and Fortin (2018)
cover many of these approaches for ecologists (and see Augustin et al. (1996)). Keitt
et al. (2002) reviewed several such models in the application of species distribution
modeling (recall Chap. 2). They found that adding spatial elements improved the
performance of the models—and that the particular form of the spatial element was
not as important as its inclusion in some form. Dormann et al. (2007), in their review
of methods for incorporating autocorrelation into species distribution models, came
to similar conclusions while encouraging further comparative studies.

In the remainder of this chapter, we focus on two approaches that incorporate
spatial elements into multivariate models of species-environment relationships. In
this, we will extend approaches previously introduced in Chap. 4. The aim is to
explain the distributions of multiple species, in terms of environmental factors as
well as spatial structure.
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6.2.4 Workflow for Spatial Inferential Models

The workflow for these analyses will begin with species (SPP) and environmental
(ENV) data sets, appropriately edited and transformed as part of exploratory data
analysis (EDA, Chap. 3) (Fig. 6.3). The analysis, a regression, entails separately
estimating the effects (explanatory power, in terms of regression) of a set of
environmental predictors and a set of explicitly spatial predictors.

We will consider two approaches. The first is a Mantel’s test, a correlation
between distance matrices. Here, we adapt this to use three distance matrices: one
comprising compositional distances, one of environmental distances, and a third that
is explicitly spatial and computed from geographic distances among samples. Rel-
ative to the workflow in Fig. 6.3, the estimate of the relative explanatory of
environment as compared to geographic distances is assembled from several sepa-
rate Mantel’s tests.

In the second example, we use constrained ordination to fit a multivariate
regression of species composition (as abundances) on environmental and spatial
predictors. As with Mantel’s tests, these are fitted piecewise: environmental effects
by themselves, then environmental and spatial effects combined, and then as partial

Data editing, EDA ——>
GEO

Summary: R?,
Variable importance

=f(=1V)

Add GEO ]:

Summary: R?,

= —
f GEO) Scale(s) importance

Variance partitioning l

Explanatory power of
,GEO

Fig. 6.3 Workflow for inferential models that incorporate environmental predictors (ENV, spa-
tially structured) as well as pure spatial predictors (GEO). The first stage predicts species on
environment. The residuals from this model are then extracted, and these residuals are models on
spatial predictors. To do the variance partitioning requires a full set of models: SPP~ENV,
SPP~GEO, SPP~ENVIGEO, SPP~GEOIENV, and SPP~ENV + GEO. The results are then pooled
and the separate components computed by differencing, yielding a variance partitioning (see text)
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regression models in which the spatial effects are fitted after controlling for
environment.

In both approaches, the variability explained by environment as compared to
space is partitioned afterward into a summary of the modeling (variance partitioning
in Fig. 6.3).

6.3 Mantel’s Test

Here we develop a set of analyses, which collectively can suggest the relative
importance of environmental as compared to spatial structure in explaining the
relative abundances of a set of species. This addresses two of the issues that plagued
our efforts in species distribution modeling: that the environmental predictors are
correlated among themselves and that the variables are almost certainly spatially
autocorrelated. The approach developed here addresses these two issues by translat-
ing the question so that it is framed in terms of distance or dissimilarity matrices.

6.3.1 The Logic of Mantel’s Test

Mantel’s (1967) test is a correlation or regression in which the variables are
themselves distance matrices summarizing pairwise dissimilarities among sample
locations. We have already encountered Mantel’s tests when we used them to
correlate species compositional dissimilarity with environmental dissimilarity, to
assess the explanatory power of ordinations based on dissimilarities (NMS in
Chap. 4, Sect. 4.3.2), and again when we used the test to find an appropriate number
of groups in classification (Chap. 5, Sect. 5.5.1).

Here we extend the family of Mantel’s tests to include the case where one of the
distance matrices is “space” itself, measured as geographic distance between sam-
ples. The inclusion of a geographic distance matrix allows Mantel’s test to address
spatial structure explicitly. In practice, the power and versatility of Mantel’s test stem
from the various ways that the test can be constructed.

6.3.2 The Analysis

Mantel’s statistic is based on a simple cross-product term:
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n n

7= Z injyij (6.6)
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where x and y are variables measured at locations i and j (i #j) and n is the number of
samples. Mechanically, this is done by writing the elements of the lower triangle of
the distance matrix as a vector, which will have n(n — 1)/2 elements for n sample
locations. The Mantel correlation is normalized, analogous to a Pearson product-
moment correlation:

=
=

= : 2 2 — (y—ijs: 2 (6.7)
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and the s, and s, are standard deviations for variables (distance matrices) x and y.
This standardized equation allows one to consider variables of different measure-
ment units within the same framework, rescaling the statistic to the range of a
conventional correlation coefficient bounded on [—1,1]. In practice, a negative
Mantel correlation is rare. The magnitude of correlation is often comparatively
small even when highly significant statistically (Dutilleul et al. 2000; Goslee 2010).

Note that Mantel’s test is based on linear correlation and hence is subject to the
same assumptions that apply to a common Pearson correlation (i.e., nonlinear
relationships between variables will be degraded or lost in the linear correlation).
Moreover, the test of spatial dependence is averaged over all distances in the simple
Mantel’s test, and so this test cannot discover changes in the pattern of correlation at
different distances (scales). The Mantel correlogram (below) overcomes this
problem.

Because the elements of a distance matrix are not independent, Mantel’s test of
significance is evaluated via permutation procedures. In this, the rows and columns
of the distance matrices are randomly rearranged while maintaining the symmetry of
the matrices. Mantel statistics are recomputed for these permuted matrices, and the
distribution of values for the statistic is generated via many iterations (Manly 1986,
1991; Legendre 2000; Goslee and Urban 2007).

In the discussion that follows, we will be concerned with three distance matrices:

1. Species compositional distances, denoted SPP, e.g., as Bray-Curtis or other
measures.

2. Environmental distances, using an appropriate measure. This matrix will be
coded ENV. Recall Chap. 3 (Sect. 3.2.4) for more on these distance measures.

3. Geographic distances (GEO). These distances might be in two dimensions (e.g.,
latitude, longitude) or three (adding altitude), and they might be computed as
Euclidean or as more nuanced ecologically weighted distances (e.g., as least-cost
paths between samples, based on a surface representing resistance to dispersal
(Urban et al. 2009; Dale and Fortin 2014; and see Urban (2023), Chapter 6)).
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6.3.2.1 Mantel’s Tests: Cases

Because Mantel’s test is simply a correlation between distance matrices and the
distance matrices can be variously defined, the test can assume a variety of forms as
special cases. These are, in fact, variants of the same case but are interpreted
somewhat differently. There are several variants of interest here (Legendre and
Fortin 1989):

Simple Mantel’s Test A simple Mantel’s test involves two distance matrices.
There are several of interest here. If one distance matrix is species similarity and
the other matrix is geographic distance, the research question is “Are samples that
are close together also compositionally similar?”. This is equivalent to testing for
overall autocorrelation in the dependent matrix (i.e., averaged over all distances).

If one matrix is environmental similarity and the other matrix is geographic
distance, then the simple test asks “Are samples that are close together also envi-
ronmentally similar?” This is the multivariate case of environmental autocorrelation.

Often, a comparison of interest is between a species compositional matrix and one
of environmental distances. That is, are samples that are environmentally similar
also similar in species composition? This is the question at the crux of the environ-
mental control model of autocorrelation, i.e., as a result of environmental
dependencies.

We have previously considered a simple Mantel’s test using a contrast matrix to
assess group differences. In this, the matrix is coded O if two samples are in the same
group, else 1. The test assesses the extent to which samples in the same group are
more similar than samples in different groups, the Mantel equivalent of a multivar-
iate F-test. We used this to choose an appropriate number of groups (levels) in
classification (Chap. 5).

The Mantel Correlogram An extension of a simple test with a geographic distance
matrix (above) is to partition or subset the analysis into a series of discrete distance
classes. That is, a first distance matrix is evaluated for all pairs of points within the
first distance class; then a second matrix is scored for all pairs of points within the
second distance interval, and so on. This is actually a series of contrast matrices, with
each distance class in turn contrasted against all other distances. In this, pairs of
samples are coded O if they are in the same distance class, else 1. The result of this
analysis is a Mantel correlogram, analogous to an autocorrelation function but
performed on a (typically multivariate) distance matrix.

Partial Mantel’s Test on Three Distance Matrices The Mantel’s test of interest
here is a partial regression on three distance matrices: species dissimilarity, environ-
mental dissimilarity, and geographic distance (Legendre and Fortin 1989). The
analysis in this case is partial regression (Smouse et al. 1986), and two partial
correlation (or regression) coefficients are of interest: rspp_pvviceo and rspp.gro
eny- The partial rspp_gyvigeo asks whether there is an effect of the environment on
species composition, after controlling for spatial structure in species composition.
The partial rspp.geoieny asks whether there is residual spatial structure in
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composition after removing the effect of environment. This latter partial would
include the effects of a pure spatial process (e.g., local dispersal) as well as the
effects of any unmeasured spatial constraint or legacy.

These partials can be subtle to interpret and it can help to phrase them explicitly.
The partial rgpp_pyviceo asks: Are samples that are environmentally similar more
compositionally similar than their spatial proximity would suggest? Conversely, the
partial rspp.groieny asks: Are samples that are in close proximity more similar in
composition than their environmental similarity would suggest? The relative mag-
nitudes of these partials, relative to the simple Mantel’s tests above, are what allow
the inference about the relationship between environment and geographic distance.

Partial Mantel’s on Multiple Predictor Variables Often, knowing that the envi-
ronment has some relationship with the dependent variable of interest is not suffi-
ciently satisfying: we wish to know which variables are actually related to the
dependent variable. The logical extension of Mantel’s test is multiple regression in
which the predictor variables are entered into the analysis as individual distance
matrices (Smouse et al. 1986; Manly 1986). In this, for example, dissimilarity on
elevation would be coded as the absolute difference in elevation between a pair of
samples (i.e., as univariate Euclidean distance). As a partial regression technique,
Mantel’s test not only provides an overall test for the relationships among distance
matrices but also tests the contribution of each predictor variable for its pure partial
effect on the dependent variable. If geographic location is included as one of the
predictor matrices, then the test returns the pure spatial residuals (the effect of “space
itself””) as well as the partials for each of the predictor variables. Lichstein (2007) has
elaborated this approach to multiple regression on ecological distance matrices.

Thus, the flexibility of Mantel’s test provides for a wide range of reasonably
explicit hypothesis tests. The onus is on the investigator to pose hypotheses and
interpret the analysis in a meaningful way. Goslee (2010) has illustrated the relation-
ships among Mantel’s tests on univariate distance matrices (i.e., on a single vari-
able), compound distance matrices (i.e., distances on multiple variables), and
multiple regressions on distance matrices.

6.3.3 Interpretation and Presentation

By convention, Mantel’s test is presented in the framework of path analysis (Leduc
et al. 1992). In this, the underlying conceptual hypothesis is made explicit: space
“causes” environmental variation, environmental variables might “cause” species
distribution, and there might be residual spatial variation in the species that is not
“caused” by the measured environmental variables (“pure spatial” residuals). In fact,
these spatial residuals are unaccountable and as such are thus fodder for further
study.

This same information is often presented in tabular form, in which the tabled
matrix is split at the diagonal into simple and partial correlations (Legendre and
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Table 6.1 Tabular form for a partial Mantel’s test with three matrices Y (e.g., species),
X (environment), and geographic space G

Y X G
Y - I'yx I'vyc
X PYXIG - IxG
G Pyaix PXaGlY -

Elements in the upper diagonal are simple Mantel correlations, the lower, partial correlations

Fortin 1989). The matrix representation of a Mantel’s test for three environmental
variables would take the form illustrated in Table 6.1. In this, the upper-diagonal
elements are simple correlations and the lower-diagonal elements are partials. In
practice, one would table the coefficients as well as their significance levels
(P-values). A predictor might have a high simple correlation but a much lower
(even nonsignificant) partial if it was itself correlated with another predictor variable.

In the case of multiple predictor matrices, the path diagrams and corresponding
tables can get a bit more cumbersome, but the idea is the same. An analysis with
multiple independent predictor matrices plus space itself would include a large set of
partial correlations, but in practice we are mostly concerned with the simple corre-
lations between species and each of the predictors as well as the partials for each
predictor by itself.

Path analysis is, of course, a matter of interpretation and it has been used and
abused in ecological applications (Petraitis et al. 1996; Legendre and Legendre
2012). Because path analysis is based on correlation, finding a significant correlation
between two variables actually cannot prove cause; yet the converse is true: failing to
find a correlation between two variables certainly argues against a causal relation-
ship. Thus, conservatively interpreted, path analysis provides a useful framework for
the interpretation of partial regression such as in Mantel’s test. (We will return to
path analysis in more depth subsequently, as it provides the logical basis for
structural equation modeling in Chap. 7.)

6.3.3.1 Reporting

Presentation of Mantel’s test should describe the input data sets (what the variables
are, sample sizes, etc.) as well as any pre-processing pertinent to the analysis (data
screening, any transformations). Beyond this, the analysis depends on:

The choice of distance measures for all input data sets and the motivation for
these (and note that data transformations can have a large impact on these)
Mantel correlograms, if appropriate (these are useful in EDA)

Reporting of the simple Mantel’s test results

Reporting of any partial test(s)

A narrative explanation of how the correlations (especially partials) should be
interpreted ecologically

NENENEN

These results can be presented in a table (as in Table 6.1) and/or a path diagram.
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6.3.4 Illustration: Sierran Forests

As an illustration of Mantel’s test, we can revisit the Sierran forest data that we have
explored in previous chapters. For this, we will use a compositional distance matrix
computed as extended Bray-Curtis dissimilarities (i.e., the same data used for
ordination in Chap. 4 and classification in Chap. 5). The environmental distance
matrix is computed as Mahalanobis distances, because of the correlations among the
variables (Goslee and Urban 2007) (recall Chap. 3, Sect. 3.2.4). The geographic
distances are Euclidean, based on sample locations recorded as UTM coordinates
(easting and northing, in m).

The Sierran forest data show spatial autocorrelation in tree species abundances
and environmental factors to distances of approximately 2000-2500 m. Species
composition autocorrelated to somewhat longer distances (~3000 m) than the envi-
ronmental factors (Fig. 6.4).

Urban et al. (2002) illustrated a set of simple and partial Mantel’s tests using the
same data featured here. They found strong spatial structure in species composition
(as Bray-Curtis distances but not extended distances) and in the environmental
variables (as Euclidean distances; this was before Mahalanobis distances were
readily available in software). The partial for environment, controlling for geo-
graphic distance, was small but significant, underscoring the spatial structure in
the environmental variables. Because Mantel’s tests are no longer the preferred
method for this accounting (see below), we will not delve further into this
analysis here.

0.25

0.20 Species
Environment

0.15

0.10

Mantel R

0.05

0.00
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I I I I I I
0 1000 2000 3000 4000 5000

Distance (m)
Fig. 6.4 Mantel correlograms for species (extended Bray-Curtis distances) and environment

(Mahalanobis distances) for the forest data from Sequoia National Park. Solid symbols are
significant at P < 0.05; open symbols, nonsignificant
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6.3.5 Problems with Mantel’s Test

Recently Mantel’s test has been criticized (Guillot and Rousset 2013). One critique
applies to the partial test in which “pure spatial” effects are distinguished from the
effects of environmental variables. The issue is that the permutation test used in this
case removes (randomizes) the environmental variable and also any spatial structure
associated with that variable. That is, “environment” cannot be separated from
“space” cleanly because they are confounded.

It might be argued, however, that the permutation test should remove the spatial
structure associated with an environmental variable: an environmental variable and
its spatial structure are essentially the same thing. Removing that variation should, in
principle, allow other spatial influences to be revealed at that same or similar scales.
For example, consider a hypothetical case where tree species composition is
influenced by topographic moisture as measured by a topographic convergence
index (TCI), which might scale on the order of tens to hundreds of meters (Urban
et al. 2000; see TCI in Fig. 6.2). Forest composition might also be influenced by local
seed dispersal, which acts at similar scales. Removing the effect of TCI might reveal
residual spatial structure at that scale, which could be attributable to seed dispersal
(or, again, some other spatial process or unmeasured constraint at that scale).

The main issue with Mantel’s test in this application is its sensitivity or error rate
(Legendre 2000; Legendre and Fortin 2010; but see Somers and Jackson (2022) and
Quilodran et al. (2023)) and that it does not seem to have the power that newer,
alternative tests can provide (Legendre et al. 2005, 2008; Legendre and Fortin 2010;
Dale and Fortin 2014). This newer approach is developed below. Legendre and
colleagues suggest reserving Mantel’s tests for applications that are best framed in
terms of distance matrices and using the approach described next for cases that can
be analyzed in terms of the primary data matrices. Distance-based cases would
naturally include, for example, applications in landscape genetics (Wagner and
Fortin 2013) where between-sample genetic similarities are the focus; this would
include the fundamental issue of genetic isolation by distance (Wright 1943).

It is worth emphasizing here the practical value of Mantel’s tests for landscape
management. A Mantel correlogram (Fig. 6.4) indexes the spatial scaling of the
distance decay of ecological similarity (Nekola and White 1999). This is a measure
of beta-diversity, the turnover of species composition along geographic or environ-
mental gradients. This information can inform conservation planning. For example,
Wiersma and Urban (2005) used empirical estimates of rates of species turnover to
recommend appropriate spacing of nature reserves in the Yukon, Canada. The logic
is that reserves that are very close together (i.e., within the range of autocorrelation or
self-similarity) would tend to support the same species and thus be redundant.
Reserves spaced farther apart would tend to support different species and in this
provide more conservation value. This is the issue of complementarity in reserve
design, an issue that frames our initial approach to site prioritization in Chap. 8. This
example also raises the question that sites that are closer together might be better
connected via dispersal as compared to sites farther apart. This implies a possible
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trade-off between local conservation value and connectivity—a trade-off we address
explicitly in Chap. 8.

6.4 Multivariate Spatial Regressions

In this section, we revisit ordination analysis (Chap. 4) and extend this to include
spatial structure. To do this, we will need to merge two lineages and perspectives:
ordinations constrained by ancillary predictors and spatial predictors in regression.

6.4.1 Indirect Versus Constrained Ordinations

We have already touched on the constrained ordinations that are counterparts to the
three lineages or underlying models for indirect ordination (Chap. 4). A constrained
analysis forces the ordination axes to be expressed in terms of (typically, environ-
mental) predictors provided as an ancillary data set—a multivariate regression. In the
case of the linear model of principal components analysis (PCA), the constrained
approach is redundancy analysis (RDA). With weighted averaging, canonical cor-
respondence analysis is the constrained version of correspondence analysis (recip-
rocal averaging). With distance-based ordinations, nonmetric multidimensional
scaling (NMS) has its (approximate) constrained counterpart in distance-based
RDA (dbRDA), which is a constrained principal coordinates analysis (PCoA). It
will be timely to review how these techniques work, as injecting spatial structure into
the analysis essentially means constraining an ordination with predictors that are
explicitly spatial.

With the linear model, the constrained approach (RDA) is a fairly straightforward
extension of PCA. In this, each species in the dependent data set is modeled as a
linear function (by multiple regression) of environmental predictors chosen by the
researcher. Thus, for m species and p environmental predictors, there are
m regressions, each of which is constructed from the p predictors. These regressions
are then used to predict the abundances for each species on each sample plot. In turn,
the set of predicted species abundances is assembled into a new data set and
ordinated via PCA. The result is a set of new axes (PCs) that summarize the amount
of variability in species composition that can be accounted by the environmental
predictors.

In the case of the weighted-averaging ordination, the algorithm of reciprocal
averaging provides an easy heuristic on the constrained version (Fig. S4.6 in
Supplement S4). In the indirect approach, sample scores are used to compute species
scores by weighted averaging, and these species scores are then used to compute
sample scores as weighted averages of the species scores. This process iterates until
both sets of scores (samples and species) converge. To constrain this algorithm, an
additional step is inserted. After computing sample scores from the species scores,
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new sample scores are estimated by regressing the weighted-average scores on the
environmental predictors. These scores are typically called LC scores because they
are linear combinations of the environmental predictors. These scores are then used
to compute species scores as weighted averages (WAs) of the LC scores; the species
WA scores are used to recompute sample WA scores; the WA sample scores are
regressed on the environmental predictors to yield new sample LC scores; and so on,
until all scores converge. There are eigenanalysis solutions to the indirect and
constrained ordinations, but the reciprocal averaging algorithm helps make it clear
how the scores are related to each other.

In distance-based ordinations, NMS is the popular indirect technique. The
constrained alternative is a bit less straightforward, as it borrows from the PCA
lineage. In this, note first that a computationally expedient alternative to the NMS
algorithm is to instead perform PCA on a distance matrix. This is principal coordi-
nates analysis (PCoA). As compared to PCA, PCoA is a O-mode eigenanalysis of an
n X n matrix of ecological distances between pairs of samples (e.g., as Bray-Curtis
dissimilarities); recall that PCA is an R-mode eigenanalysis of an m x m (for
m species) or p x p (for p environmental predictors) correlation or covariance matrix.
The result of PCoA is n new axes—principal coordinates—that summarize the main
trends in dissimilarities among samples. As with PCA, we expect most of the
variation to be expressed on the first few axes. To constrain this analysis, the
principal coordinates of compositional dissimilarity are then analyzed with RDA,
yielding compositional ordination trends (axes) that are predictable from the envi-
ronmental variables. This approach is distance-based RDA, or dbRDA (Legendre
and Anderson 1999; McArdle and Anderson 2001). There are subtleties to all of
these techniques, to be sure! Legendre and Legendre (2012) describe these
approaches in depth.

In each constrained ordination, we can inject spatial structure by using environ-
mental predictors that have spatial information. This might be via locational vari-
ables (latitude, longitude, distance to the coast, etc.) or more sophisticated methods.
To that end, we turn to spatial regressions more generally and consider how to
account for spatial structure in such models.

6.4.2 Multivariate Regression with Spatial Predictors

The emerging approach for dealing with environmental constraints and spatial
structure is multivariate regression with environmental as well as explicitly spatial
predictors. Multivariate regression is the generalization of multiple regression to
include multiple response variables as well as multiple predictors. In the cases of
interest here, these variables are species abundances and constrained ordinations
(RDA, CCA, or dbRDA) provide the regression framework. Explicitly spatial pre-
dictors are generated from a geographic distance matrix; these spatial components
are called Moran eigenvector maps (MEMs) and are related to autocorrelation
functions (recall Moran’s I, sect. 6.2.1).
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Fig. 6.5 Workflow for a constrained ordination using environmental as well as spatial predictors.
Preparation of the species and environmental data sets are much as with other ordinations. The
geographic data are used to construct a network model (a graph), the distances in which are then
used to construct spatial weights. A PCoA of the weight matrix generates Moran eigenvector maps
(MEMs), which are pure spatial predictors. The rest of the analysis is a partial regression

The workflow for a spatial, constrained ordination follows the general workflow
shown in Fig. 6.3 but includes enough extra details that it is worth expanding that
workflow to highlight the extra steps (Fig. 6.5). The analyses illustrated here were
done with redundancy analysis, using R packages ade4 and its dependencies (Dray
and Dufour 2007) and vegan (Oksanen et al. 2021; R Core Team 2021). The
analyses followed recommendations of Borcard et al. (2011), Dray et al. (2012),
Legendre and Legendre (2012), Bauman et al. (2018), and especially Dray (2020).

6.4.2.1 Moran Eigenvector Maps

Moran eigenvector maps are created from a distance matrix comprised of between-
sample geographic distances (typically Euclidean). To begin, a network model
(a graph) is constructed for the samples. There are several options for the form of
the graph. These typically are complete graphs (all samples are connected) but rather
sparse representations of the network, emphasizing short-distance connections (and
see below).

The between-sample distances extracted from the graph are then weighted to
emphasize closer distances. Again, the aim here is to emphasize direct short-distance
connections and local spatial structure.

Principal coordinates analysis of the (sparse, weighted) distance matrix generates
new variables—principal coordinates, which are the MEMs—that decompose the
trends in the distance matrix into independent elements. For a data set with
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n samples, there are n new variables (MEMs). These MEMs are an empirical
estimate of the “pure spatial” predictors implied by Eq. (6.4).

It is not easy to describe MEMs in simple language: they are the main trends in
“distances apart” in the spatial network matrix. The MEMs are explicitly spatial
constructs and mutually independent. In the simplest case of a data set consisting of
samples evenly spaced along a linear transect, the MEMs obtained are a series of
sinusoidal waves of decreasing wavelength or scale: coarse scales first (long waves),
followed by successively finer-scale patterns. These MEMs are relatively tidy in
terms of their order, scales, and interpretation. Perhaps this is because all of the
“distances apart” along a transect are equivalent (e.g., any two samples can be 1, 2,
3, and so on units apart and all of these separation distances are essentially the same
no matter where along the transect they occur).

In more realistic cases of two-dimensional sampling designs with irregularly
spaced sample locations, the MEMs are not as orderly but still represent sinusoidal
patterns of various scales. In these cases, the MEMSs unavoidably also contain
locational information beyond “distance apart,” because the unique distances
between sample pairs depend on the precise locations of each of the samples.
Legendre and Legendre (2012, Chapter 14) provide helpful illustrations of MEMs
derived from a series of sampling arrangements including a transect, a regular grid,
and irregularly spaced samples.

6.4.2.2 Constrained Ordinations with MEM Predictors

The approach for modeling with environmental as well as spatial predictors is an
iterative process (Fig. 6.5). In each step, the analysis is a multivariate regression in
which species composition is modeled in terms of multiple predictor variables.
Again, this regression could be conducted with redundancy analysis (RDA), canon-
ical correspondence analysis (CCA), or distance-based redundancy analysis
(dbRDA) (see Supplement 4S, Borcard et al. (2011), and Legendre and Legendre
(2012) for more details on these tools).

As a first model, the constrained ordination is fitted using the environmental
predictors only. This accounts for the explanatory power of the environmental
variables, and the analysis includes a summary of this explanatory power. The
residuals of this regression represent variability in species composition that is
unrelated to the measured environmental variables.

In one sense, a second regression completes our task. Modeling the residuals of
the first regression (SPP~ENV) on the MEMs (SPP~GEOIENV or residSPP~GEO)
captures that spatial structure in species composition that is unrelated to the envi-
ronmental variables. The significant MEMs in this regression suggest the scales of
this structure.

Before going further, it might be worth underscoring the ordering of this analysis.
Because the MEMs account collectively for all of the spatial information in the data
set, they can predict essentially anything measured on the samples—including the
environmental variables. We reduce this effect by beginning with a sparse network
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of between-sample connections and then pre-screening the MEMs to retain only
those MEMs related to species composition. Still, to get a clearer picture of the
relative explanatory power of environment as compared to geographic distances, we
will need several models to parse the environmental and spatial predictors. The
models provide different inferences:

SPP~ENV The first model reveals the environmental effects (including any spatial
effects inherent to the environmental factors). By contrast, a model of SPP~GEO
would capture spatial structure in species (including environmental effects that are
spatially structured). The overlap in spatial signals in these two models is what forces
partial regression models (next).

SPP~GEOIENV This partial regression reveals the residual spatial structure in
species composition after accounting for environmental factors. By contrast, the
model SPP~ENVIGEO would show the pure environmental effects after controlling
for spatial structure.

SPP~ENV + GEO The full model provides the total explanatory power from the
environmental as well as spatial predictors. This includes all of the effects and is
used to compute the residuals (see below).

This accounting is common to multiple regression in general, when using corre-
lated predictors (recall our efforts to understand the relative importance or correlated
predictors in species distribution models in Chap. 2).

6.4.2.3 Variance Partitioning

The final result of this analytic process is a set of models with which we can partition
the amount of species compositional variability due to (a) the measured environ-
mental variables, (b) the amount of compositional variability that is spatial and
related to measured environment, (c) the variability explained by the MEMs but
that is unrelated to the environmental variables, and (d) the amount of residual
compositional variability that is unrelated to environment and also unstructured
spatially (i.e., the residuals of the full model).

This partitioning requires a set of models, because only some of the components
can be estimated directly (Table 6.2, Fig. 6.6, after Legendre and Legendre 2012).
(Note that Fig. 6.6 is not how these fractions are typically illustrated as a Venn
diagram; this is perhaps mostly a matter of software concessions. Here the figure is
designed to be consistent with Venn diagrams used in other chapters in this book.)

In practice, multiple models are used and the fractions are computed by differenc-
ing (Legendre and Legendre 2012).
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Table 6.2 Variance components for a set of models using two sets of predictors, set 1 and 2, with

dependent variable Y

Model Fitted Residuals
Y~sl a+b c+d
Y~s2 b+c a+d
Y~sl +s2 a+b+c d
Y~slls2 a d

Y~ 2Isl c d

See Fig. 6.6 for component labels

Fig. 6.6 Schematic of

variance partitioning for

models with two sets of

predictor variables.

Components are defined in

Table 6.2 (after Legendre a
and Legendre 2012)

Set 2

6.4.3 Interpretation, Presentation, and Reporting

These analyses generate an impressive volume of information and it takes some
effort to parse the many results. The interpretation proceeds as with any regression:
evaluating the model’s statistical significance, explanatory power, and the relative
importance of the predictors.

As these models are based on ordinations, they also are interpreted from this
perspective (and recall Chap. 4): What are the ordination axes? How do species sort
along the axes? Which environmental variables are correlated with which axes? And
for the spatial model, which MEMs are correlated with the ordination axes derived
from the residual variation in species composition not related to the environmental
variables? At what scale(s) are these spatial residuals expressed?
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These evaluations will generate a series of tables and figures as with any
ordinations, as well as tables that summarize the regressions:

Sample sizes and descriptions of the SPP, ENV, and geographic (GEO) data sets,
along with details about data screening, transformations, and any exploratory data
analysis that influenced subsequent analyses

For the spatial processing:

Choice of graph model for the geographic coordinates of the samples

The function and effective distances used to generate graph weights
Preselection of MEMs for further analysis (e.g., by selection of MEMs signifi-
cantly related to species composition)

NN

For the multivariate regression analyses:

Choice of multivariate regression model (RDA, CCA, dbRDA) and why

Overall R* (adjusted) and significance of the models

Interpretation of the axes: variance per axis (singly and cumulative; table)

Species loadings on the axes (weighted-average positions or correlations) (table

or joint plot)

For the environmental regression, correlations between the axes and environmen-

tal variables (table or biplot)

For the partial regression, correlations between the axes and the spatial MEMs

Joint biplots as appropriate: sample scores, species positions, and biplot vectors

for the environmental variables and/or spatial MEMs

Maps of the partial axes on MEMs controlling for space (i.e., the axis values
plotted into geographic space)

Variance partitioning to distinguish environmental and spatial explanatory power

(table and/or Venn diagram)

y NN

NN

These are illustrated with examples in the following section.

6.4.4 Illustration: Sierran Forests

We will illustrate spatial multivariate regression using the Sierran forest data that we
have explored previously. In this case, the samples are located in clusters of three to
four samples with the clusters themselves distributed over a longer elevation gradi-
ent (recall Fig. 3.3).

6.4.4.1 Pre-processing of the Spatial Data
Preparation of the MEMs was conducted using the ade4 package (Dray and Dufour

2007) and its dependencies in R, following the protocol outlined by Dray (2020).
This entails constructing a graph model of the sample locations, choosing a
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Fig. 6.7 A Gabriel graph connecting the sample locations shown in Fig. 3.3. The underlying grid is
of 1000-m partitions. See text for explanation of a Gabriel graph

distance-weighting function, creating the MEMS, and screening MEMs for their
relevance to species composition.

A variety of graphs were assessed from these points, with a Gabriel graph
(Fig. 6.7) ultimately proving more effective (marginally) than other alternatives
such as a minimum spanning tree or various distance-thresholded graphs. A Gabriel
graph is constructed by drawing a circle with a diameter corresponding to the line
between any two samples. If there is no other sample located within that circle, the
link that connects those two samples is included in the graph. The result is a
completely connected but rather sparse graph that emphasizes relatively short-
distance connections.

From the distances represented in the graph, a weighting matrix was estimated by
various functions of distance. In this instance, the final weights were based on a
negative-exponential function of distance computed to tail off at a maximum
distance of 3000 m. This distance was, in turn, chosen based on the Mantel
correlograms for species composition and environmental factors (Fig. 6.4). This
choice was corroborated by comparing it to other distance functions.

It should be noted there that the selection of the graph—and the form of the
weighting function—was done by completing the first regression analysis in Fig. 6.6
(i.e., SPP on GEO) using alternative graphs and alternative weighting functions and
then choosing the combination that provided the best result. That is, this is a process
of iterative model selection. It should also be noted that several alternative graphs
and weighting functions provided rather similar results to those shown here.

A few MEMs constructed from this stage of the Sierran analysis illustrate the
range of spatial scales represented. Scale is inferred from the distances between
strong positive versus negative values (Fig. 6.8).

After selecting a graph and weighting function, a constrained ordination was
conducted with the spatial predictors only. This model was post-processed using a
forward stepwise analysis, and those MEMs that contributed significantly to the
solution were retained (Dray 2020). This step typically omits many of the MEMs as
being unrelated to species composition. Recall, from an n x n distance matrix
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Fig. 6.8 A selection of
MEMs constructed by
principal coordinates
analysis of the weighted
Gabriel graph in Fig. 6.7.
Symbols sized proportional
to magnitude; filled
symbols, positive; open,
negative. The distances
between strong positive and
negative values indicate
scale. The top panel shows a
large-scale MEM; the
middle panel, intermediate;
and bottom, finer-scale
pattern

177

MEM1
g
oo
Ié’_ri‘ "oy OF o
= %@D
MEM4
g
m ..
4 @% wE b
& g”o
im} a
MEM20

representing the graph, there will be » MEMs: a lot of spatial predictors (here, 99). In
this case, half of the MEMs have negative eigenvalues, which correspond to negative
autocorrelation. Because we are interested in environmental control and do not have
any measurements that might imply negative autocorrelation (e.g., due to competi-
tion among tree species), we discarded the MEMs with negative eigenvalues (see
discussion in Legendre and Legendre (2012, Chapter 14)). In this example,
22 MEMs with positive eigenvalues were retained for further analysis.
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6.4.4.2 Multivariate Regressions

In this illustration, we used RDA so that the analysis was a constrained linear model
on species abundances. This decision diverges from exploratory data analysis
(Chap. 3) and NMS ordinations considered previously (Chap. 4), which embraced
the nonlinear species response to the dominant elevation gradient. Here, we used
RDA because it allows the analysis to track individual species as compared to the
aggregate species response in NMS (Chap. 4) and dbRDA, which are based on
compositional dissimilarities. In this, we followed the recommendation of Legendre
et al. (2005, 2008) and Legendre and Fortin (2010) to use actual data matrices, when
available, rather than distance matrices.

The species data were modified using the Hellinger transformation (Legendre and
Gallagher 2001), which improves the geometry of the projection of the
multidimensional species data onto a few (often, two) Euclidean axes. (We might
note here that we did not choose to use canonical correspondence analysis, because it
has its own projection issues that are not as readily addressed via data
transformations.)

These transformed data were then analyzed using RDA with the 13 environmental
factors and 22 MEMs retained in screening. Three analyses are summarized here.
These include the base-case model of species in terms of environmental predictors
(SPP~ENV), the partial regression of the residuals of the environmental model on
the MEMs (SPP~GEOIENV), and the full model (SPP~ENV + GEO). Analyses
shown here were conducted using function rda in the vegan package (Oksanen et al.
2021) in R (R Development Team 2021).

SPP~ENV In the Sierran case, the RDA using only environmental variables was
highly significant (P < 0.001) and accounted for 35.3% (adjusted R?) of the variation
in species composition, indicating a substantial amount of variability related to the
environmental variables. In this implementation, the significance tests are generated
by permutation (999 trials), and the adjusted R reflects sample sizes and the number
of variables in the model. Three RDA axes were highly significant (P < 0.001) and a
fourth marginally so (P < 0.10).

Elevation was highly significant in the RDA model (P < 0.001), while slope
angle, pH, transformed aspect, litter depth, and mean soil depth were significant at
P < 0.01; C-N ratio was significant at P < 0.05. The first axis was clearly identifiable
as an elevation gradient, with subsequent axes identified in terms of other environ-
mental factors (Table 6.3).

Species sort on the first axis to reveal the elevation gradient, as indicated by Pinus
contorta (PIco) and Pinus monticola (PImo) with positive scores and mid- to lower
elevation species such as Abies concolor (ABco), Pinus lambertiana (Plla), Pinus
ponderosa (Plpo), Quercus kelloggii (QUke), and Calocedrus decurrens (CAde)
with low (negative) scores. Subsequent axes sort more subtle differences among
species. A joint biplot of this solution emphasizes the elevation gradient in terms of
species sorting (as their weighted-average positions on each axis) and correlations
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Table 6.3 Correlations between the environmental variables and the first three axes of an RDA
with environmental variables only

Variable RDAL1 RDA2 RDA3
Elevation 0.94 —-0.22

Slope 0.25 0.62
TAspect —0.20 —0.47
TSI 0.19 0.21

xLitter —0.18 —0.17

xDepth —0.66 —0.43 0.19
sDepth

pH —0.70 —0.46 0.28
C 0.35

C.N 0.55 —-0.23 0.47
P —-0.25 —0.40 —0.28
ECEC —0.38 0.55
Clay 0.28 0.44

Blank entries are for correlations with P > 0.05; environmental variables described in Table 3.6

with the environmental variables (Fig. 6.9). Relative to the indirect NMS ordinations
of Chap. 4, RDA also emphasizes the dominant elevation gradient.

SPP~GEOIENV A second model was constructed as a partial RDA, modeling SPP
on GEO after controlling for ENV. This is a model of GEO with the residuals of the
first model (above). Note that this is a new multivariate regression: the residuals from
the environmental analysis comprise a new data set, and this second analysis aims to
summarize patterns in the residuals collectively. That is, the axes of this solution
need not correspond to the axes of the first model. This second model was highly
significant (P = 0.001) and explained 28.4% (adjusted R?) of the residual variation in
SPP after controlling for ENV.

The first three partial axes are statistically significant (P < 0.001) with a fourth
less strongly significant (P < 0.05). Many of the MEMs were significant: eight at
P < 0.001, two at P < 0.01, and four at P < 0.05.

As with other ordinations, the partial dbRDA can be post-processed to explore
correlations between the MEMs and each axis and to calculate species scores
(as weighted averages) on each axis. But it can be easy to overinterpret these
summaries; in particular, it can be tempting to try to relate individual MEMs to
species composition. This is not a good practice (Legendre and Legendre 2012), as
the risk is to interpret idiosyncrasies in the MEMs that depend on the sampling
design and the (selected) between-sample distances.

Instead, it can be useful to plot selected partial axes in geographic space, to
explore geographic trends in the axes without looking too closely at any individual
MEMs contributing to that axes except in terms of their relative scaling. For
example, a plot of the first partial axis (Fig. 6.10) shows substantial variation at
mid-elevations (center of the figure) where Jeffrey pine (PIje) occurs separately from
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Fig. 6.9 Joint biplot of the RDA of species composition in terms of the environmental variables.
Dots are sample points. Species are identified by codes (see Table 3.5) at their weighted-average
position on each axis. Correlation vectors for the environmental variables (described in Table 3.6)
are shown only for variables significant at P < 0.01
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Fig. 6.10 Bubble plot of sample scores on the first axis of the partial RDA on MEMs after
controlling for environmental variables (see text for explanation). Symbols sized relative to
magnitude of sample scores (solid, positive; open, negative)
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samples characterized by red fir (ABma) and white fir (ABco) (compare to Fig. 3.7).
The environmental ordination separates these forest types but with only modest
explanatory power from the environmental variables (and recall the NMS ordina-
tions in Chap. 4, Figs. 4.9, 4.10, and 4.11).

SPP~GEO + ENV A full model was estimated using the environmental factors as
well as the MEMs. This analysis was also highly significant (P = 0.001), capturing a
total of 63.7% (adjusted) of the variance.

The particulars of this analysis are not really interesting here. What we need from
this model is its overall explanatory power, which we will use in variance
partitioning (below).

6.4.4.3 Variance Partitioning

Partitioning the explanatory power of environmental as compared to spatial pre-
dictors requires multiple models, which allows the estimation of the unique compo-
nents of explanatory power by differencing (Table 6.2). Here, this analysis was
conducted using function varpart in R package vegan (Oksanen et al. 2021), which
itself uses function rda as used above.

For this data set, variance partitioning shows a strong spatial effect that is shared
between the environmental variables and the MEMs (Fig. 6.11). A total of 33.1% of
the variation is shared between the environmental and spatial predictors. The MEMs
explain 28.4% variance in species composition after controlling for the environmen-
tal variables, while the environmental variables contribute only 2.2% after control-
ling for their spatial structure. Collectively, the environmental and spatial predictors
explain 63.7% of the variation in species composition (the full model, above),
leaving 36.3% as residual variation (which is unstructured spatially).

Fig. 6.11 Variance

partitioning for the Sierran

forest data, using RDA. See

Table 6.3 and Fig. 6.7 for 0.02
definitions of the

components. Ellipses are

only approximately to scale

or proportion

0.33
0.36

GEO
0.28
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6.4.4.4 Interpretation

Collectively, the results of RDA and variance partition underscore the importance of
the environmental variables and that these variables are strongly structured spatially.
This is corroborated by supporting analyses (scaling of selected environmental
variables, Fig. 6.2; Mantel correlograms, Fig. 6.4). We can further corroborate this
general conclusion by correlating the MEMs with the NMS ordination featured in
Chap. 4: the indirect ordination axes are correlated with several MEMs, especially
the second axis (results not shown). It might also be noted here that this same general
result was provided by partial Mantel’s tests and by a variance partitioning based on
distance-based RDA (neither result shown here). This implies that the ecological
result is strong and relatively robust to the details of alternative analytic approaches.

It is worth reiterating what the variance partitioning suggests ecologically. The
nonspatial environmental influence (component a in Fig. 6.6, here 2.2%) represents
environmental influences that are not also represented in the MEMs. This typically
implies spatial variability that is finer-scale than the MEMs (which themselves
depend on sample locations), or random variation. In this system, soil factors
might be one candidate (Urban et al. 2000). This component is quite negligible here.

Component b (33.1%) is variation shared by environmental variables and the
MEMs, which is to say, spatial structure in the environmental variables. In this
instance, the environmental variables are strongly structured spatially, as already
noted. To underscore this meaning of this component relative to component
a (above), the low partial (a) does not mean that the environmental variables are
not important; it means they are spatially structured.

Spatial variation unrelated to the environmental variables is harder to identify.
This component (c, 28.4%) might include unmeasured environmental variables that
are spatially structured (here, cold air drainage is one candidate), localized (and
unobserved) biotic interactions such as competition, spatial processes such as seed
dispersal, the legacies of contagious disturbances (here, especially fire), and so
on. We do not know what these factors might be, and so knowing the spatial scaling
of these (as revealed in mapping the partial RDA axes; Fig. 6.10) can suggest
candidates for a follow-up study. The aim here is to transfer, iteratively, the
unknown spatial variation in component ¢ into the identifiable component (a + b).
This is the general recipe for untangling spatial structure in landscape-scale data
(Levin 1992; Mclntire and Fajardo 2009; Legendre and Legendre 2012; Dale and
Fortin 2014).

6.5 Further Reading

Spatial statisticians are heavily invested in spatial models and most texts cover the
subject in some depth. Haining (1993) and Cressie (1993) are standard references but
are somewhat difficult as these models appear sprinkled throughout the texts.
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Haining’s (2003) text seems to package these issues in a more accessible format
(Chap. 9). These texts are written by statisticians, for statisticians. Legendre’s (1993)
paper on autocorrelation provides a solid foundation for the approaches described
here. Wagner and Fortin (2005) provide an overview of spatial issues for ecologists.

While Mantel (1967) is the original authority on the test, the Legendre group is
responsible to a large extent for the popularization of Mantel’s tests (Legendre and
Fortin 1989; Borcard et al. 1992; Leduc et al. 1992; Legendre and Troussellier 1988;
Fortin and Gurevitch 1993; Dutilleul et al. 2000; see especially Legendre and
Legendre (2012)). Manly (1986, 1991, 1997) has also played a strong role in
introducing the approach to ecologists.

Legendre et al. (2005) presented a new approach for partitioning spatial structure
in community data, based on principal coordinates analysis of truncated neighbor
matrices (PCNM). MEMs are the general case of PCNM, and while the emerging
approach of constrained ordinations using MEMs has been championed primarily by
Legendre and colleagues (Legendre et al. 2005, 2008; Legendre and Fortin 2010;
Borcard et al. 2011; Dray et al. 2012; Legendre and Legendre 2012; Dale and Fortin
2014), it is now being used and refined by others as well (e.g., Wagner 2013).

Dale and Fortin (2014) cover a wide range of topics on spatial ecology, in a
format aimed at ecologists. Relative to this chapter, their coverage includes sampling
design, autocorrelation and regressions, Mantel’s tests, graph (network) models, and
constrained ordinations using MEMs. Fletcher and Fortin (2018) cover spatial
analysis of communities in some depth, in a format aimed at ecologists and empha-
sizing analyses in the R environment.

6.6 Summary and Prospectus

Interpreting spatial structure in community-level landscape data is a natural evolu-
tion of analytic approaches long used by ecologists. The decision to “embrace space”
invites a new level of analysis and supports a new realm of ecological insights.

Constrained ordinations, as multivariate regressions with environmental as well
as spatial predictors, are emerging as the technique of choice for many ecological
applications concerned with species composition, environment, and spatial structure.
It is fair to say that this approach is a major step beyond the descriptive ordinations
we considered in Chap. 4. In particular, it is difficult to attach an intuitive interpre-
tation to an MEM variable other than its being a spatial structure at a particular scale;
locational effects also are a part of this but also invite overinterpretation. As
complicated as this approach might be, it offers substantial insights into the spatial
structure of data sets and a regression-based perspective on the relative importance
of explanatory variables. Beyond this, comparative testing using simulated and real
data sets suggests that the MEM-based approach with constrained ordinations has
more power and better sensitivity as compared to Mantel’s tests.

There is still work to be done in evaluating this approach and arriving at a
consensus on “best practices.” As it took decades for ecologists to come to a
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consensus on how to use ordinations and classification techniques (if we are actually
there!), the recent evolution of constrained ordinations with MEMs is rather remark-
able. The next few years should be interesting indeed.
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Chapter 7 ®)
Structural Equation Models Shex

Abstract Ecological data sets tend to present a tangled web of correlations among
variables. Structural equation modeling (SEM) is a method for explicitly analyzing
this web of correlations, by declaring why the variables should be correlated. A
structural equation model is based on a path diagram that poses causal interactions
among variables, which might include indirect effects mediated by several variables.
A SEM also poses a measurement model, which might include latent variables
representing concepts that can be measured only indirectly via indicator variables
(e.g., the concept of water quality as indicated by sediment or contaminant loadings).
The path model implies a pattern of covariation among variables; this implied
covariance provides the basis for testing both the path and measurement model.
The process of SEM is an iterative workflow from an initial conceptual model,
though estimating and evaluating a formal SE model (or perhaps several of these), to
post-processing that summarizes all of the direct and indirect effects in the model. As
ecologists increasingly deal with targets such as water quality, environmental health,
and other latent concepts, SEM should be a valuable part of the ecological toolkit.

7.1 Introduction

We began with the task of species distribution modeling (Chap. 2), in part, because it
introduces most of the issues that plague landscape analysis: ecological data are
messy, intercorrelated, and spatially structured. In Chap. 2 we dealt with the
correlations by removing redundant predictors, to improve the model fit and ease
of interpretation, and we engaged in some modest gymnastics to infer the relative
importance of predictor variables. In Chaps. 4 and 5, we dealt with redundancy and
noise by aggregating it away—using ordinations (Chap. 4) or classification tools
(Chap. 5). Then we added spatial structure, still in aggregate form (Chap. 6).

Here we return to multivariate webs of correlations, addressing these through the
lens of path analysis and structural equation models. This follows a thread that is
largely separate from the analytic traditions in ecology, and it borrows rather heavily
from social sciences. The approach developed here will build on concepts and tools
from Chap. 4; in turn, this material will provide a conceptual bridge to Chap. 8.
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Structural equation modeling (SEM) has been described as the marriage of path
analysis and factor analysis. But SEM is a rather large topic and a full consideration
would broach a number of related issues in inferential design. Indeed, Grace (2006)
argues that the logic of SEM should invite us to think carefully about how we
practice statistics, even how we think about ecological data (see also Shipley 2000).
The essence of this argument is that nature is a multivariate, interrelated web—and
we should embrace this rather than trying to avoid it. SEM is a tool that embraces this
multivariate web of interactions.

SEM is a framework for interpreting correlations among variables in terms of
hypothesized causal relationships. SEM consists of two models. The first is a causal
(structural) model that poses a pattern of interactions among variables diagrammed
as causal paths. For example, “A causes B and B causes C” is a causal path from A to
C. Path analysis is a method for structuring and interpreting a regression analysis to
emphasize such relationships. The second model is a measurement model, which
admits that many of the “things” we find interesting in ecology are difficult to
measure directly; and so, we devise empirical indicator variables for these elusive
latent factors. For example, we use a term such as “water quality” but this is a
concept; what we measure are indicator variables such as dissolved oxygen, nitrogen
and phosphorus concentrations, turbidity, and so on. The link between concepts and
indicators evokes factor analysis (Sect. 4.3.2). In SEM, the causal model implies a
pattern of correlation (or covariance) among the measured variables, linking the
causal and measurement models and providing a means to test both.

While SEM might seem a rather substantial departure from the general workflow
of this book, we have previously taken the first few steps in this direction. In setting
up species distribution models (SDMs), we began with a conceptual model that used
ecological theory and natural history to suggest factors that might explain species
distributions. We then devised empirical measurements to capture this ecology: the
ecological and data models underpinning the statistical SDM (Chap. 2, Sects. 2.2.1
and 2.2.2). This same process will guide us in defining latent variables and their
indicators in SEM. Similarly, both SDM and constrained ordinations (Chap. 6) are
regressions and use the same set of tools in estimating and interpreting models
(estimation, variable importance, variance partitioning).

The Task at Hand
Most generally, SEM is a framework for the analysis of patterns of covariance in
data sets. From this perspective, many familiar tools (multiple regression, factor
analysis, ANOVA, MANOVA) are special cases of SEM. In many particular cases,
we will explore structural models in which we expect variables to interact (i.e., be
correlated) via indirect paths involving multiple variables (e.g., the “A causes B
causes C” case posed above). These instances are addressed directly and explicitly in
SEM. In short, SEM is a crucial tool for analyses in which we expect variables to be
correlated because of the way they interact along paths.

It might be helpful here to address an issue that often arises with an introduction
to path analysis and SEM. We are taught from an early stage of our training that
correlation does not imply causation. That is true. But the converse is not true;
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indeed, causation does imply correlation. The pattern of covariation implied by the
path model is precisely what provides the leverage to use SEM to understand
complicated natural systems.

We will delve into SEM by starting with the logic of path analysis, which is a
special (simple) case of SEM. We will then enrich this model by layering on the
concept of latent variables and indicators. We will explore a few hypothetical cases
as a way to illustrate the process of building a SE model. Finally, we will consider
the potential for a variety of multivariate applications in ecology, emphasizing
modern implementations of SEM.

SEM, at its core, is a procedure for dissecting the pattern of covariances implied
by a conceptual model of how a system works. From this perspective, the declaration
of a path model for a given system might be considered a prerequisite’ to any efforts
in research or management of that system: How can we aim to work with a system
without also declaring some notion of how it works? This conceptual model—even
if never implemented as a SEM—will provide a foundation for site prioritization and
structured decision-making (Chap. 8) as well as the interpretation of system change
over time (Chap. 10).

7.2 Conceptual Foundations

Path analysis and SEM have an episodic history (reviewed by Shipley 2000; Grace
2006) that might partially explain why it is not as well-known among ecologists as it
might be or should be. Path analysis was devised by Sewall Wright (1921), the
hugely influential geneticist and evolutionary biologist. But his method was some-
what at odds with prevailing approaches at that time, as espoused by statistical
powers including Fisher (who championed randomized trials as the primary basis for
causal inference) and Pearson (who argued that correlations or “associations” were
all that we have access to—not causation). And so path analysis fell by the
wayside. . .until it was picked by social scientists decades later and extended in
ways (see below) that established “modern” path analysis and SEM.

Here, we begin with the initial form of path analysis, but most of this chapter is
focused on modern SEM.

'T often argue to students (and anyone else who will listen) that they should not embark on any
research or management applications for their system until they can produce a plausible conceptual
model of how it works. While we all might believe we have such a model in mind, the act of
specifying the model, in substantial detail, is harder than it might seem. It is worth the effort.
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7.2.1 Path Analysis

A common problem in ecological analysis is that many of our analytic techniques are
purely correlational, that is, they imply nothing of causality. This can be a particular
problem in landscape ecology because the logistics of conducting experiments at
very large spatial scales frequently forces us to rely on inferential methods rather
than direct experimental manipulations that could demonstrate causes more directly.

Path analysis is a way to organize a correlational analysis to emphasize posited
causal relationships (Petraitis et al. 1996). In its original form, this was not so much
an analysis itself, but rather a way of post-processing and interpreting an analysis.

Path analysis recognizes that there are a few ways that two variables might be
correlated:

1. There is a direct causal relationship (a simple path, either A—B or B—A).

2. There is an indirect causal relationship via causal chains (a compound path,
A—M—B, so A and B are correlated).

3. There is a noncausal correlation because both variables are caused by a third
measured variable (C—A, C—B, so A and B are correlated but spuriously so).

4. There is a noncausal correlation due to (unspecified, unmeasured) correlated
causes, which is unanalyzable.

The way to sort through these relationships is to specify explicitly a model—a
path diagram—that poses a hypothetical relationship among variables, specifying
why variables should be correlated. Again, this model is interpretative; labeling a
path as “causal” does not make it so.

Path Coefficients and Effects
The goal of the original version of path analysis was to decompose correlations into
their causal and noncausal components. The basic approach is linear regression, and
the focus is on partial regressions. By convention, the analysis is framed in terms of
standardized partial regression coefficients, which express the pure effect of one
variable on another if all other variables are held constant. The standardization yields
predictions in terms of z-scores, to avoid complications due to different measurement
units on the variables. Also by convention, r’s are used to denote correlations and p’s
to denote causal path effects (which are standardized partial regression coefficients).
The results of path analysis are typically presented by attaching the path coeffi-
cients (p’s) to the arrows in a path diagram. Additionally, total effects may be
collated for all variables in the analysis. Total effects include direct causal paths as
well as indirect effects via causal chains through intermediate variables (Fig. 7.1).
Path effects are standardized correlations for simple paths, while for compound
paths the effects are multiplied over the path. Thus, for the left-hand path diagram in
Fig. 7.1, in which the correlation between A and B is coincidental:
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Fig.7.1 Examples of path diagrams illustrating relationships among three measured variables A, B,
and C. The U represents all unmeasured (unknown) variables influencing variable C. Causal
relationships are denoted by solid arrows and noncausal correlations by dashed double-headed
arrows
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T'AC =Pac + I'ABDPBC

rBC = Ppc + I'ABPAC

Here, A’s total effect on C, eac, is the sole direct path eac = pac; likewise, B’s
effect on C is egc = ppc. The associations mediated by the correlation r,p are
unanalyzable. For the right-hand path diagram, the situation is different:

rac =Pac + PaBPBC

rBC =PBc + 'ABPAC

In this case, B’s total effect on C'is simply ppc, its direct effect, while A’s effect on
C is the sum of its direct and indirect effects, eac = pac + pasPrc- Note that the
correlation structure in these two cases is identical; what differs is the interpretation
of causal paths (the direction of the arrows). (To be strictly correct, variable B in the
right-side model should also have an error term U connected to it, as we do not know
whether B is completely caused by A.)

Grace (2002) presents a nice illustration of alternative ways that paths might play
out in ecology. A grassland system provides the setting (Fig. 7.2). In this example,
grazing has a negative effect on plant biomass (i.e., herbivores eat plants), and
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biomass has a negative effect on plant species richness (i.e., through competitive
exclusion). So the indirect effect of grazing on richness through biomass is positive
(i.e., negative x negative). But grazing also reduces richness directly, perhaps
through selective foraging.

In this case, the effect of grazing (G) on richness (S) is the sum of the direct and
indirect paths, which is —0.4 + (—0.5 x —0.8) = 0.0, which is also the simple
correlation between G and S. The simple correlation between B and S is —0.6 (—
0.8 + —0.5 x —0.4), which yields a regression R? of PGs TGs + Pss 'ps = (—0.4
x 0.0) + (—0.8 x —0.6) = 0.48. Thus, grazing is uncorrelated with richness but
explains 48% of the variance in richness when analyzed in terms of causal paths. An
instance like this, perfectly offsetting effects, is probably quite rare in natural
systems; but the more general case of offsetting causes that confound observed
correlations is probably not uncommon.

It might be worth underscoring the difference between this partitioning of the
variance and more conventional regressions. In the corresponding multiple regres-
sion, S ~ B + G, the analysis would have the same R? (0.48) but could not reveal the
indirect path. In the paired univariate regressions, S ~ G and S ~ B, grazing would not
emerge as significant because of its (lack of) correlation, while biomass would yield
an r* of 0.36 and not include the indirect effect of grazing.

The original version of path analysis amounts to an after-the-fact partitioning of
pure and partial coefficients from a conventional regression analysis. The analysis
makes the usual assumptions that apply to regression and adds a few more that are
specific to the paths:

. Relationships are linear, additive, and causal.

. Residuals are uncorrelated with variables previously entered into the model.
. There is no reciprocal causation.

. All variables are interval scale (no ranks or categories).

. All variables are measured without error.

O O R S

Of course, these assumptions are unlikely to be met perfectly by ecological data,
but as with regression the results seem robust to minor departures from these
assumptions. Modern methods of analyzing path relations in advanced applications
of structural equation modeling (“modern” SEM) can relax all of these assumptions
except the assumption of causality.

7.2.2 Factors and Structural Equation Modeling

Factor analysis enters into SEM because the entities that are posed in causal paths are
often not measure directly. Instead, they are represented by specific indicators. In the
language of SEM, these factors are termed latent variables if they are considered to
be unmeasurable in principle. In the context of this discussion, latent variables often
are common factors represented by indicator variables (see Supplement 4S.2.3 for
more on factor analysis). The measured indicators are termed observed or manifest
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Fig. 7.3 A hypothetical grazing system in which grazing (G) influences species diversity (S) as
well as plant biomass (B)—which also influences species diversity. Here, the ovals indicate latent
variables associated with indicators in rectangles (e.g., animal unit months for grazing pressure,
measured aboveground biomass for total biomass, richness for species diversity). Each indicator is
associated with an error term (deltas for exogenous indicators, epsilons for endogenous indicators),
as are the endogenous latent variables (which are not completely specified by the paths; errors
denoted with zetas)

variables—the former term used to remind us that these are actual data, and the latter
term used to connote the hypothesis that the underlying latent variable caused the
indicator (i.e., it is a measurable manifestation of the latent variable). From this
perspective, the path analysis example above is a simple case of SEM in which all of
the variables are observed.

We can revisit the grassland example above and expand the model (Fig. 7.2) to
more fully embrace the conventions of modern SEM (Fig. 7.3). This is essentially
the same model as above, but we have now made it explicit that we are measuring
three indicators (animal unit months, aboveground biomass, and species richness;
drawn in boxes in the diagram) to represent three latent variables (ovals in the
diagram). We have also admitted that the indicators are not without error; by
convention, exogenous indicators have errors (or disturbances) denoted with deltas
(6), while errors on endogenous indicators are denoted by epsilons (g). An exoge-
nous variable is one that takes on values due to forcings outside the system; the only
arrows on these variables point from the variable. Endogenous variables are affected
by other variables in the system as modeled; that is, they have arrows pointing to
them (as well as perhaps from them). Latent variables also have prediction errors,
because the causal paths might not determine them completely. These errors are
denoted with zetas ({).
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7.2.3 Modern SEM

The addition of latent variables to path analysis represents a major innovation and
one that reflects a disciplinary investment in common factors by social scientists.
Social scientists routinely are interested in concepts such as “intelligence” (including
verbal or other aspects of this). These factors are typically quantified with indicator
variables derived from surveys; various aptitude or personality quizzes are familiar
examples. In these, the questions are indicators and the research task is to devise
indicators that are unambiguous, unbiased, and repeatable. In applications, the
investigator is interested in the common factors—the indicators are not of interest.

A second and perhaps more important extension to path analysis was the gener-
ation of a means to estimate and evaluate the model globally. By contrast, the initial
method for path analysis tested each “arrow” in the system but there was no way to
assess the overall model. Modern path analysis was framed in terms of covariances
and fit using maximum likelihood methods, which provided the basis for an overall
test of the model. This capability also provides the means to compare alternative
models, a compelling feature of SEM.

Conditional Independence and Model Fitting

The path model in SEM represents two models. One is the causal model, a hypoth-
esis about causal relationships in the system. The second model is the measurement
model, posed in terms of indicator variables for the latent variables. These are
related, in that the causal model implies, for example, how indicators should covary.

The goal of the SEM analysis is to estimate and interpret coefficients that
populate the path model. From this, the structural model is evaluated in terms of
the posited causal paths (the arrows among latent variables), while the measurement
model is evaluated to assess how well the indicators capture the latent variables and
to estimate the relative explanatory power of each of the indicators in the model. The
entire model comprises a set of regression coefficients along with a set of variances,
covariances, and error variances. These are estimated simultaneously.

The key to the solution of a SEM is that the causal model implies a particular
pattern of covariation among the variables. For example, if X/, X2, and Y are linked
by a compound path (X! — X2 — Y), they must covary in a way consistent with that
path. This is the so-called test of mediation in path analysis—that the effect of X/ on
Y is mediated by X2. Another way to say this is to note that unless X2 is available
empirically, X/ and Y will be uncorrelated. Again, the correlation between X/ and
Y is the correlation between X/ and X2 multiplied by the correlation between X2 and
Y. The correlation between X/ and Y is conditional on X2; X/ and Y are conditionally
independent. Thus, if we can fix X2 (experimentally or statistically), we do not need
to know X/ to know Y: X2 is all we need. That is, rx; x> = 0, or in SEM terms,
X1 1L YIX2 = 0 (read “X1I is conditionally independent of Y, given X2”) (Fig. 7.4).

The key to the path model is that collectively it implies a set of covariances and
partial covariances expected from the model. In modern SEM, a key innovation was
the derivation of a solution, estimated using maximum likelihood methods, that is
expressed in terms of the covariances and partial covariances. If the data do not
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X1 X2 | Y

Fig.7.4 A Venn diagram to illustrate one case of d-separation or conditional independence. Circles
represent variance in each variable, and overlap is covariance. Here, X/ is conditionally indepen-
dent of Y because its influence on Y is mediated by X2. The partial correlation between X/ and Y,
given X2, is 0

match this pattern, the model is wrong. Importantly, this fit assesses both the causal
and the measurement model. Inspection of the fitted parameters, their errors, and
significance values can suggest where the model might be revised to better fit the
data (and see below).

7.3 The Procedure of SEM

The workflow for SEM consists of the usual process of data preparation, model
fitting, and model evaluation. But fitting a SEM often comprises its own workflow
(Fig. 7.5), as the fitting and evaluation often is done in an iterative way.

In what follows, we focus on “modern” SEM and its maximum likelihood
estimation. We extend this approach to include newer innovations subsequently.
The workflow is adopted primarily from Grace et al. (2010, 2012).

7.3.1 Data and Data Preparation

Because it is based on regression, SEM is subject to the data screening and
assumptions common to regressions. Beyond this, there is an emphasis on screening
variables in terms of what they represent (e.g., if indicating for latent variables) and
the role they will play in the analysis.

While original path analysis was expressed in terms of standardized coefficients,
modern SEM often uses unstandardized as well as standardized solutions. As a
reminder, standardization is particular to a data set, so presenting results in stan-
dardized forms means that they cannot be compared directly to studies based on
other datasets. By contrast, unstandardized estimates reflect the measurement units
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Fig. 7.5 Workflow for structural equation modeling (adapted from Grace 2006; Grace et al. 2012).
The step from prototype (conceptual model) to a final fitted model can be rather involved (see text).
The evaluation stage is separated based on how the model is being used: with confirmatory SEM or
competing models, there is a single evaluation; in exploratory modeling, the process might iterate
through multiple revisions

of the variables, and so terms cannot be compared easily within the same analysis.
Grace (2006) and colleagues suggest using a compromise approach and scaling
variables so that they vary on a similar scale (e.g., 1-100) so that the results can be
interpreted readily but without standardization.

While SEMs could, in principle, be modeled with spatial predictors (recall Sect.
6.4.2.), in practice this is rarely done; the models are typically nonspatial. . .although
they might invoke explanatory or response variables that are, in reality, spatially
structured.

7.3.2 Observed, Latent, and Composite Variables

The initial example considered here to illustrate path analysis (Fig. 7.2) amounts to a
SEM using only observed variables. In the social sciences, SEM is heavily invested
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in latent variables indicated by observed variables. It is useful here to revisit these
approaches.

In the simplest case, an SE model can be framed in terms of observed variables
only. This simplifies the analysis somewhat. But if we have several possible
observed variables that are loosely related, we expect these to be correlated to
some degree. At this point, three alternatives emerge in modern SEM.

Observed Variable One approach is to choose a single indicator variable for each
term in the conceptual model, resulting in an observed-variable or manifest SEM.
This model would have no latent variables. This is a common approach in the natural
sciences (and see below).

Latent Variable A second approach is to frame these correlated variables as
multiple indicators for the same latent factor. For example, we might measure
impervious surfaces, road density, and any number of other manifestations of
urban development. In this perspective, impervious surface area and road density
are indicators for the latent variable urban development. In SEM, the estimated
model is concerned primarily with the effect of development on a response variable
(say, water quality, itself also a latent variable). The indicators are considered to be
rather uninteresting in themselves; they are redundant and substitutable.

Composite Variable By contrast, we might actually be interested in assessing the
relative importance of impervious surfaces as compared to roads in affecting water
quality. In this case, we would use both observed variables in the model, and not
specify a latent variable. In estimating the model, the path coefficients would allow
us to determine which (if either) of these variables had the stronger influence on
water quality. This would be especially appropriate if we expect the mode of action
to differ among variables. For example, impervious surfaces affect water quality via
overland flow and washing of sediments and contaminants into streams. Roads, by
contrast, might contribute heavy metals to streams via emissions from car exhausts.
We expect these effects to be correlated because most roads are impervious while not
all impervious surfaces are roads.

This is to say, development has a number of interrelated manifestations, many of
which might affect water quality. From this perspective, the effect of development
on water quality is the sum of the influences from the separate observed variables.
These cumulative influences can be aggregated after the fact from an SEM simply by
adding up their individual effects. In this example, the effects of development on
water quality would be the sum of the influence of impervious surfaces and roads.
This aggregate construct is a composite variable in SEM (Grace 2006; Grace and
Bollen 2008; Grace et al. 2010). (As a matter of detail, a composite variable is
diagrammed as a hexagon, and the arrows point from the indicators to the composite,
signaling that the indicators cause the composite.) This approach of aggregating
composite variables seems likely to be especially important in ecological applica-
tions (see below).

One final consideration in the choice to use latent variables is the possible aim to
generalize the model results to other systems. If this is the aim, then latent variables
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can be used to express the general model and its expectations. Others could apply the
same model—perhaps using different indicator variables—to test its generality. By
contrast, an observed-variable approach restricts the conversation to the selected
indicator variables (or composites based on these).

7.3.3 The Process of SEM

Building and evaluating SE models is a process that evolves in several stages. The
first step is to specify a construct model, which is a prototype” of the path diagram.
This is essentially a conceptual model that represents what theory (or working
hypothesis) suggests about relationships among the ecological concepts of interest.
That is, the construct model illustrates how we believe the system works. This model
might be diagrammed with ovals and arrows only. This model is formalized by
posing the details of the SEM, in terms of latent variables (if used), indicators,
covariances, and error terms.

The details of this can become rather complicated, and so for any given applica-
tion, the full model might be reduced in scope; in this, we might ignore certain
complexities or otherwise narrow the scope of the model. This amounts to removing
some of the boxes and arrows before fitting the model. These decisions depend on
the explicit goals of the application, of course, but often also reflect available data,
spatial and temporal scale, and other considerations.

The model to be fitted might still include a lot of terms! These will include
regression coefficients for causal paths, variances, or covariances among pairs of
variables and error terms. It is often useful to constrain the model with empirical
estimates of terms to the extent possible. The parameters of the specified model are
then estimated. Again, this amounts to solving for all of the terms simultaneously,
subject to the stated constraints.

In models estimated using maximum likelihood methods, the fit is evaluated in
terms of a Chi-square test on model deviance (recall this test from species distribu-
tion models in Chap. 2). Note also that the goal of the analysis is to find that the
model as posed is not inconsistent with the data. That is, the aim is to find a
nonsignificant P-value—to not reject the hypothesis that the data match the model.
In practice, multiple models might be evaluated to choose the most likely model
from among several plausible alternatives. In confirmatory mode, this approach
explicitly tests the posed model using the measured data (and see Sect. 7.3.4).
This approach is in contrast of the conventional approach in regression, which
assesses the model (and data) against the null model of randomness. This capacity
to evaluate the overall causal model explicitly is an important feature that

2Grace and colleagues refer to this prototype model as a metamodel. But there is another tradition in
ecology in which metamodels are after-the-fact constructions of models of models. So I will use
construct or prototype model here.
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distinguished modern SEM from the original formulation of path analysis. In
particular, modern SEM is often used to compete alternative models against each
other, using the data to arbitrate the best fit.

In model estimation, it is typical to evaluate alternative models successively,
perhaps by modifying hypothesized paths or covariances in order to find the best-
fitting model. In model revision, this often consists of deleting arrows that were
posed in the model but were not significant in the fitted model, or adding new paths
that were not included in the original model.

In software implementations of SEM, a powerful aid to model refinement is the
provision of modification indices, which are suggestions of new arrows that might be
considered to improve the overall fit; these suggestions are based on observed
correlations within the data set. As with many modeling exercises, this stage of
model evaluation might continue indefinitely, as one tries to revise the model to be as
general and robust as possible. In practice, one would retain the first (reduced) model
that is consistent with the data. Again, a strength of SEM is the capacity to compete
models of similar complexity, letting the data choose the better model.

Ideally, validating a SE model involves tests using data independent of the model-
building exercise—as with any model. To do this, the model must work in terms of
unstandardized covariances rather than standardized correlations (recall any stan-
dardization is particular to a data set and cannot be extended to new data sets). To
provide for broader generalization and richer insights, modern SEM typically esti-
mates standardized as well as unstandardized parameters.

7.3.4 Model Evaluation and Interpretation

A SEM is a regression, and like any regression, there are several items to evaluate:
(1) whether the model is significant, (2) its explanatory power, (3) the relative
importance of predictor variables, and (3) whether it can provide useful predictions
about unobserved cases or scenarios. With SEM, each of these can be a richer
exploration than with a simple regression.

The test of significance, a Chi-square test based on maximum likelihood estima-
tion, is unusual in that we aim for nonsignificant results: that the model is not
inconsistent with the data. As with species distribution models fitted as GLMs or
GAMs, the maximum likelihood criterion provides a means for comparing
(or competing) alternative models. An ANOVA using the Chi-square test explicitly
compares one model to an alternative (provided these are nested models using the
same data). For two models that are both nonsignificant, there is no clear rule on
choosing the better model (except, perhaps, in the case of a marginally nonsignifi-
cant versus a clearly nonsignificant test, e.g., P = 0.06 versus P = 0.5). For any
given system, there might be alternative models that are equivalent in terms of their
fit and explanatory power; only further model tests or manipulative experiments can
resolve these.
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As aregression, an SEM provides an estimate of its explanatory power in terms of
R’ value. This is an aggregate estimate, perhaps reflecting multiple paths to the
response variable(s). In many SEMs, there also might be intermediate R’ values for
endogenous variables that are generated along causal paths.

Interpreting variable importance in a SEM is simpler than in a multiple regres-
sion, in the sense that the role of each variable is specified in the model. Each
variable might be involved in more than one path or noncausal correlation, and each
term will have its associated P-value. Predictor variables might play multiple roles,
and it is interesting to decompose the overall effect into its component parts: the
direct effects of a predictor on the dependent variable via a simple path, as well as the
indirect effects via compound paths. In SEM, it is conventional to collect and report
these components explicitly: direct, indirect, and total effects.

The process of fitting an SEM is typically iterative. At each iteration, the model
might be revised by removing nonsignificant paths or adding new paths or correla-
tions based on the preliminary fit. This iteration can lead to model over-fitting to the
training data set. Given this tendency, Grace et al. (2012, Grace 2006) suggest three
alternative cases in model evaluation:

1. Strictly confirmatory: If the model was constructed based on prevailing theory,
then there should be little model revision. In evaluating the model, the decision is
straightforward: the model either fits the data or it does not. This case is probably
more typical in the social sciences than in ecology.

2. Competing models: In some applications, there might be alternative and equally
plausible conceptual models or hypotheses. In such cases, the competing models
would have different topologies (different path models), and again, the evaluation
is a single decision: whichever model better fits the data is supported.

3. Exploratory modeling: In perhaps most applications, the construct model is a
working hypothesis and model fitting involves some iteration and revision. This
process should lead to a more robust working hypothesis. Exploratory modeling
can lead to substantial learning—the discovery of new paths or effects not known
previously. But the resulting model is best interpreted as a new hypothesis, with
provisional acceptance pending independent validation.

7.3.5 Model Queries

Once validated, a SEM can be used in applications—just as with any other regres-
sion. But the range of applications is rather broader with SEMs, precisely because of
the logic of folding why into the relationships among variables and the nuance
provided by direct and indirect paths. Exploring an SEM might involve different
types of queries (the bottom tier in Fig. 7.5) (Grace et al. 2012).

Some model explorations are prospective and entail exploring the consequences
of a predictor variable taking on a new value in the future. These are model
predictions in the sense of most regression models. SE models can also be used to
conduct virtual experiments, in which the investigator intervenes in the model to set
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one of more values (i.e., of predictors or mediating variables) to assess the implied
consequences; these are forms of model-based scenarios. SEMs can also be used for
retrospective explorations. Attribution studies are one example, in which interven-
tions are used to assess the relative plausibility of various paths in the model as a way
to account for observed outcomes (i.e., might this have been the cause of what we
have observed?). Finally, retrospective queries can be used to evaluate counterfac-
tuals (e.g., to assess the implications of alternative starting points or baseline
conditions).

7.3.6 Reporting and Communication

Reporting the results of a SEM analysis would typically detail a stepwise process
from prototype model, through any intermediate models, to a final model. These
models might be represented as a sequence of path diagrams, with the final model
diagrammed in terms of significant effects (arrows) describing the topology of the
model. By convention, significant arrows are retained and drawn with line thick-
nesses proportional to effect sizes; nonsignificant relationships often are removed
from the path diagram. In cases where a nonsignificant relationship is obtained but
the conceptual model or theory demands that relationship, it would be reported but
drawn with a dashed line.

The final model would be presented in terms of its path diagram(s), test of
significance (Chi-square test), direct and indirect effects (as partial R? values), and
total explanatory power (R?). These latter elements would be collated into a table
similar to a typical regression summary but with the added information on partial
(indirect) effects. Collectively:

Description of the data (what they are, what they represent, samples sizes, etc.)
Data screening and editing, including standardization or relativizations
Bivariate summaries of correlations (matrix)

Conceptual model (proto- or construct model diagram, with explanation and
justification of claims)

Final model (diagram, with proportional arrows, etc.)

Table of model coefficients, errors, and P-values, probably standardized, along
with unstandardized results (perhaps in an appendix)

Overall test of model significance (Chi-square value, df, P-value)

Narrative summary of the main direct and indirect effects and discussion of any
model revisions (e.g., paths removed or added)

NENENEN

NN

7.3.7 Extensions

The discussion thus far has illustrated the form of SEM that is probably in widest use
currently. This is typically a hybrid of observed and latent variables (natural
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scientists tend to use latent variables less than social scientists), with relationships
presumed linear and estimated using maximum likelihood methods. But SEM is a
rapidly evolving practice and there are several developments that are promising to
make it even more applicable to natural systems (Grace 2006; Grace et al. 2012).
Collectively, Grace et al. (2012) suggest that these extensions represent an emerging
third-generation SEM.

Categorical Response Variables While original path analysis was restricted to
continuous variables, newer implementations can also admit categorical response
variables (note that categorical exogenous variables are not a complication in SEM).
This is especially germane for models that include experimental contrasts such as
categorical treatment levels.

Multigroup Models In many instances, we expect different groups to behave
differently in the same model. For example, sexual dimorphism might lead to
different responses for males as compared to females. In a multigroup model, the
topology of the model is the same for both groups but the coefficients can vary.

Hierarchical Models In some systems, the causal effects in the model might inherit
from or be influenced by higher-level effects. For example, individual responses
might be nested within a species-level response, or species-level responses might
vary within habitat guilds (e.g., ground-nesting versus canopy-nesting birds). Multi-
level models permit these hierarchical relationships.

Piecewise Estimation While modern SEM is usually estimated globally, an emerg-
ing approach uses local estimation (Grace et al. 2012; Lefcheck 2016). By contrast to
the global fit, which uses all the available information, a local fit uses only part of
that information.

The local fit is applied to subsets of variables, subject to a test of d-separation
(think d for dependency; Shipley 2000; Grace et al. 2012). These cases are candi-
dates for conditional independences in the model, and are identified for all pairs of
variables that are not directly connected by a path, controlling for common ancestors
(but not common descendants) and inclusion in compound paths. There might be
several instances or claims of d-separation in any given path model, many of which
are redundant because they are implied by related claims. The basis set of claims is
the minimum set of claims that imply all the rest. The piecewise solution fits the basis
set, resulting in a P-value for each case. From these, an overall test of significance
can be estimated in terms of Fisher’s C (Lefcheck 2016):

C=-2) In(P) (7.1)
k

for the k cases. C is distributed approximately as Chi-square and can be evaluated
accordingly.

Piecewise estimation has two important consequences: (1) It allows more com-
plex functional forms (e.g., nonlinear fits), because the estimates are based on
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the data points themselves (recall that the maximum likelihood estimate uses only
the covariance matrix, not the samples that generated that matrix); and (2) it reduces
the chance that local misspecification of a model will propagate errors to other parts
of the model.

Bayesian SEM Bayesian methods have been in practice as a solution technique for
SEM for some time, but there is more potential here in terms of incorporating
existing information as priors—including estimates derived from other studies.

Bayesian methods tend to outperform maximum likelihood methods for smaller
sample sizes while providing similar estimates for large sample sizes (maximum
likelihood estimators are asymptotic, thus more accurate for larger sample sizes). As
a rule of thumb, Grace et al. (2012) recommend a ratio of samples to estimated
coefficients, d = n/a (for n samples and a coefficients), of 5 or more; a ratio of <5
would suggest using a Bayesian estimate.

As a trade-off, Bayesian methods do not provide a measure of overall model fit, as
is provided by maximum likelihood solutions. Some practitioners use maximum
likelihood methods and corroborate this solution with a Bayesian version. Bayesian
methods are not as widely available yet in software but are emerging.

7.4 Applications

It will be useful to explore a few examples in some detail, as applications typically
evolve over a characteristic logical sequence of model conceptualization, refinement,
estimation, and summary.

7.4.1 Human Disturbance and Biotic Integrity of Wetlands

Grace et al. (2010, 2012) have provided two in-depth illustrations on the iterative
process of applying SEM in ecology. Here we follow the illustration of Grace et al.
(2012), in which their concern was a relationship between human disturbance and
biotic integrity in wetlands of Acadia National Park in Maine, USA. An index of
biotic integrity was strongly and negatively correlated with an index of human
development pressure; the question is “why?” Because they stepped through the
entire process of generating, evaluating, and applying a SEM, we will work through
this example in sequence. They also provide a much deeper discussion of the steps
highlighted briefly here.

They began their study by first posing a rather general path model and then
refining this in terms of relationships they wished to evaluate as the objectives of
their study. In this, the initial model is a prototype which is fleshed out in subsequent
refinements (Fig. 7.6). This effort to come to an initial model can be quite challeng-
ing, as it forces the investigator to address issues of spatial and temporal scale,
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Fig. 7.6 Prototype path model for the Acadian wetland study (a) and (b) a more refined version of
the model that poses relationships more explicitly in terms of measurable variables. (Figures 7.6—
7.10 redrawn from Grace et al. 2012, permission licensed via Creative Commons)

available data, and what is known (or knowable) about the system—all subject to the
needs and objectives of the modeling exercise.

This model was simplified somewhat to arrive at an initial (full) model framed in
terms of measured variables only (a manifest model, without latent variables)
(Fig. 7.7). In this, the effect of beavers was absorbed into human land use effects,
because of the complicated way that beaver activity is tied to historical and current
land use practice. Because the sample size was relatively small compared to the
number of parameters to be estimated, they used Bayesian methods to fit the model.

On revision, a final path model was accepted that included many but not all of
these relationships, as well as a few new ones discovered during model exploration
(Fig. 7.8). Again, beaver activity was included in the path model but only indirectly
so in the SEM. Three new paths emerged in model revision, and five paths that were
postulated in the initial causal diagram were found to be nonsignificant for this data
set.

The final model is presented with paths labeled with their coefficients and R?
values for intermediate and the final endogenous variables (Fig. 7.9). In this, Grace
et al. adopted a compromise approach to presenting the coefficients: instead of
standardizing (which is particular to the data set) or showing unstandardized terms
(which are difficult to interpret at a glance), they present results quasi-standardized
as the results produced from the minimum and maximum values observed for each
variable, divided by that variable’s range.

This final model was used to explore management alternatives, in an application
that explicitly incorporated direct and indirect effects. In this instance, the applica-
tion compares the status quo (no action) to the outcomes predicted from two
hypothetical management alternatives posed as model interventions: to manage
invasive vegetation directly, by removing it from riparian zones or by treating
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Fig. 7.7 Initial path model of the Acadian wetland system, framed in terms of measured (manifest)
variables only. (From Grace et al. 2012)

water quality directly. While the regressions implicit in the path model would
provide an average prediction, in this case the predictions were simulated by
generating a large number of predictions—each based on a set of 200 model
coefficients drawn randomly from the mean and standard deviation of the estimated
model coefficients. In sum, the simulations provide an average expectation as well as
an estimate of the uncertainty of the model predictions (Fig. 7.10).

This example of using a path model to explore management alternatives will
serve as a bridge to the next chapter, in which we develop this path model as one
component of the structured decision-making process that often underlies site
prioritization.

7.4.2 The Urban Stream Syndrome

The urban stream syndrome is a tangled web of correlations stemming from devel-
opment infrastructure and its impacts on hydrology (Paul and Meyer 2001; Allan
2004; Meyer et al. 2005; Walsh et al. 2005; Hassett et al. 2018; and see Urban 2023,
Chapter 9). This web can be organized by emphasizing a few mediating pathways,
which include stream hydraulics affecting channel morphometry, energy levels (heat
and light), nutrient loadings, and the delivery of contaminants to the stream. These
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Fig. 7.8 Revised path of the Acadian wetland system, reduced from the initial path model shown in
Fig. 7.6. (From Grace et al. 2012). Dotted lines are new relationships discovered in model revision;
question marks denote paths found to be not important in this data set

mediating factors, in turn, influence in-stream biota and ecosystem processes
(Fig. 7.11).

Bernhardt and colleagues collected a synoptic sample of low-order urban streams
along a gradient of development intensity, in an effort to disentangle this web of
interactions. Perhaps most tellingly, they were unsuccessful in fitting a SE model of
the entire system—there are nearly as many arrows as observations in their data set!
But such a complicated prototype model need not be estimated in its entirety in order
to be useful. This conceptual model has been explored more narrowly to model
thermal pulses in urban streams (Somers et al. 2013) and chemical flashiness of
urban streams (Blaszczak et al. 2019).

For example, Somers et al. (2013) used SEM to reveal that stream temperature at
baseflow is largely explained by reach-level predictors (e.g., canopy closure, channel
incision) while stormflow temperature (thermal pulses) are explained by watershed-
scale predictors (e.g., impervious surface area).

In urban streams in Melbourne, Australia, Caressa and Parris (2013) found
indirect effects of impervious surface area mediated by aquatic vegetation to influ-
ence amphibian communities. Lu et al. (2024) used SEMs based on a construct
model similar to Fig. 7.11 to highlight indirect effects of landscape development on
aquatic macroinvertebrates in streams of the southeastern USA; their results
underscored the importance of altered flow regime and pesticides in urban streams.
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Fig. 7.9 Final model reporting, with R? for predicted endogenous variables and quasi-standardized
path coefficients for all dependencies (see text, from Grace et al. 2012). Note that beavers were
removed as a separate term and are absorbed into land use effects

The larger importance of using a construct such as Fig. 7.11 is that it can serve as
a comparative framework for other studies of urban streams. In general, we expect
that urban streams function according to this model, yet we also expect that the
various pathways should be expressed in different ways in different systems (Booth
et al. 2016; Urban 2023, chapter 9). These differences would appear as different
patterns in the relative importance of the mediating paths. To be the most general, the
model should be implemented in terms of latent variables, which would permit the
use of different empirical indicators as appropriate in different systems.

7.4.3 Urbanization and Diversity: The Four Filters
Hypothesis

Urbanization also produces a web of interactions that influence biodiversity in
developed landscapes. Williams et al. (2009) isolated these in their “four filters”
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parameters based on their errors or estimation

hypothesis: that urbanization acted via habitat conversion, fragmentation, changes in
environmental variables (e.g., temperature), and the actions of people (fertilization,
planting ornamentals).

Lopez et al. (2018) evaluated the four filters hypothesis as a structural equation
model (Fig. 7.12). They then estimated the model several times, focusing in turn on
the response variable taxonomic diversity, as well as phylogenetic and functional
type diversity, and also fitting the model for native as compared to exotic plant
species. In all this, the topology of SEM serves as a sort of experimental control,
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The ovals are posed as latent factors, and rectangles are measured variables; the hexagonal factor is
a composite variable. (Reproduced from Urban (2023) and Lopez et al. (2018); permission
conveyed via Copyright Clearance Center, Inc.)

allowing the several models to reveal the relative importance of the paths for the
different aspects of biodiversity.

In their model, they opted to represent the urban environment as a composite
variable (hexagon in Fig. 7.12), as they were interested in the relative importance of
temperature, physical alteration of streams (incision), nutrients (phosphorus), and
contaminants (zinc) as influences on plant biodiversity.
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7.4.4 Experiments as SEMs

Finally, it should be underscored that SEM offers a powerful framework for evalu-
ating ecological experiments (Shipley 2000; Grace 2006). In this, the path model
poses the logic of the experimental design and the hypothesized mode of action.
Fitting the model provides an explicit test of the path model, as well as the
opportunity to discover alternative modes of action (or outcomes!) beyond those
originally posed.

For example, Whalen et al. (2013) used SEM as a framework in which to evaluate
the role of mesograzers in a coastal marine seagrass system. The SEM itself was a
food web diagram, and the authors’ interest was in the relative importance of
top-down as compared to bottom-up control of the system. Here, eutrophication
contributed a bottom-up influence, while experimental chemical treatment of the
grazers perturbed the potential top-down control of epiphytic algae. The dynamics of
the system were complicated by seasonal changes in grazer abundances, which
emerge as a shifting pattern of control in the food web. SEM provided a useful
framework in which to explore all of these issues.

7.5 Further Reading

Sokal and Rohlf (1995) and Legendre and Legendre (2012) cover original path
analysis in some depth. There is a massive literature on structural equations,
including very many books written by statisticians or social scientists and at least
one dedicated journal (Structural Equation Modeling). Shipley (2000) and Gotelli
and Ellison (2004) offer more up-to-date coverage of modern SEM for ecologists.
Pearl (2009) provides a deep dive into causality. Grace and his colleagues have been
quite active in introducing SEM to ecologists. Grace’s chapter in McCune and Grace
(2002, Chapter 30) offers an easy introduction for ecologists, including an emphasis
on the role of factor analysis in SEM and how SEM relates to more familiar
regressions. Grace’s (2006) book similarly focuses on SEM applications for ecolo-
gists and evolutionary biologists. Grace and Bollen (2008) provide a useful intro-
duction to latent and composite variables, while Grace et al. (2010) provide an
in-depth discussion of SEM for ecologists. Grace et al. (2012) have provided a
comprehensive guide to SEM that focuses on the path models. Grace also maintains
a website (Www.structuralequations.org, now hosted at https://www.usgs.gov/
centers/wetland-and-aquatic-research-center/sci-ence/quantitative-analysis-using-
structural-equation) on the topic, which features a wealth of tutorials and guides to
software packages. Fan et al. (2016) provide a review of recent ecological applica-
tions of SEM.
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7.6 Summary and Prospectus

Structural equation modeling is extremely well developed in some disciplines,
especially in the social sciences, but it is a relative new approach for ecological
models. SEM incorporates a logical path model as well as a measurement model and
so is especially attractive in that it admits the multivariate nature of nature and
embraces a multifaceted model of how nature works. This approach seems to be a
natural fit for ecological applications that invoke concepts inviting latent variables
(e.g., water quality, ecosystem health). It seems likely that SEM will become
increasingly important as an analytic framework for ecological applications.

The path model that provides structure to SEM is especially appropriate for
applications that pose a specific mode of action and expectation of management
interventions framed as experiments. Such path models—even as conceptual
models—are increasingly playing a role in adaptive management and structured
decision-making (e.g., Olander et al. 2018; Qiu et al. 2018). We explore these in the
next chapter.
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Chapter 8 )
Site Prioritization Chack or

Abstract Prioritizing sites for protection or special management is a fundamental
task in conservation practice. But even simple prioritization schemes can be com-
plicated by other (sometimes competing) objectives. Here we begin with the task of
assembling a system or reserves to represent the full set of targets as parsimoniously
as possible (the minimum representation problem), as a way to illustrate various
approaches to this task. The focus in this is on the greedy heuristic algorithm. We
then extend this approach to consider additional objectives: species rarity, habitat
quality or patch geometry, and connectivity. These alternative objectives invite
structured decision-making in the form of multi-attribute decision analysis. Conser-
vation practice often targets ecosystem services, which can be complicated by the
engagement of a heterogeneous and spatially distributed set of stakeholders. The
workflow for structured decision-making for these applications begins with goal-
setting and works through the definition of objectives, empirical indicators for these
objectives, a model of how the objectives might be attained, and a decision process
that is as inclusive, deliberate, and transparent as possible.

8.1 Introduction

Site prioritization is the ranking of candidate sites in terms of some explicit criterion
or criteria. That criterion might be biodiversity, contribution to watershed protection,
scenic view, recreational value, or whatever. We will return to definitions shortly,
but for now, a criterion, as used here, is a measure, a quantity (a noun). An objective
relates to a criterion but is aspirational and directional: we might want to increase
(a verb) biodiversity by a set amount over a given time span. Protecting land is an
aspiration; various “30 by 30” initiatives (protecting 30% of the area by 2030) are
objectives.

Prioritizing is assigning a ranking to various alternatives, with that ranking
representing relative importance or urgency. The ranking might be to identify the
best possible sites, sites to be conserved or protected; or we might be interested in
identifying the worst sites, perhaps as candidates for restoration; or we might wish to
balance these: the best sites on some criteria, if only they were restored on some
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other criteria. A ranking is often implicit in or easily derived from a basic inventory
(Chap. 1). For example, if we inventory plant or animal species, species richness
provides for a simple and useful prioritization for conservation value. Similarly,
habitat classification techniques that estimate habitat suitability (Chap. 2) also
provide a simple prioritizing of conservation value for the focal species.

But site prioritization can address a heterogeneous set of objectives, and the task
of prioritizing for multiple purposes often can lead to competing objectives that force
decisions about which objective(s) we should favor and how to trade these off
against other objectives. In this chapter we begin with the relative straightforward
task of ranking sites in terms of their relative conservation value, with this value
defined solely in terms of species richness. We then extend this task to consider a
range of other criteria that might contribute to conservation value, again including
diversity but also attending habitat geometry (patch size, amount of edge) and spatial
context (especially connectivity).

Similarly, we can expand this discussion beyond the consideration of sites as the
units of prioritization. We might also consider, more generally, management options
such as alternative management practices that might help us meet our objectives (i.e.,
alternative means to these ends; see below). Or we might consider alternative policy
instruments intended to help us reach our objectives.

This broadening of scope invites the guidance of structured decision-making, in
this case, a multi-criteria decision framework (Gregory et al. 2012). This framework
can be extended readily to multiuse objectives typical of most landscape manage-
ment contexts (Huang et al. 2011; Hemming et al. 2022).

Recently, conservation planning has extended itself to a much broader set of
targets beyond focal species or community types (fargets are the units by which
criteria are tallied). Increasingly, targets are framed in terms of ecosystem services.
Ecosystem services are the benefits that ecosystems provide to humans (MEA 2005).
Targeting ecosystem services is a seemingly simple extension of the same multi-
criteria framework but is complicated by the explicit translation of ecological criteria
to measures of stakeholder preferences and social impact. We close this chapter with
a consideration of prioritizing sites for the provision of ecosystem services.

The emphasis here is on objective methods for estimating the relative value of
management alternatives, in terms of explicit objectives and empirical indicators of
these. This framework, in turn, will be a key element in the task of ecological
assessment, the final chapter in this book.

In terms of the overall workflow of this book (Fig. 2 in Preface), site prioritization
is a natural follow-up to inventory and, for focal species, species distribution
modeling. In turn, prioritization invites continued monitoring and assessment over
time. We turn to these in the next two chapters.
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8.2 Context: Site Selection Logic

The task of site selection is a part of systematic conservation planning, which took
root in the late 1990s and following decade (e.g., Pressey et al. 1993; Csuti et al.
1997; Ferrier et al. 2000; Poiani et al. 2000; Groves et al. 2002; Possingham et al.
2002; Moore et al. 2003). There has been enormous growth in this area, but the
basics remain much the same even as the tools and applications continue to evolve
(Moilanen et al. 2009; Game et al. 2013; Kukkala and Moilanen 2013; Tallis et al.
2017; Qiu et al. 2018). Here we are focused on site prioritization, an application that
is narrower in scope than conservation planning but a key task in that larger process.

To begin, we might consider the aims of any analyses conducted to support site
prioritization. There are three options. One is to actually solve the problem: to use an
algorithm that considers the options and returns the identification of the best
(optimal) solution. A second approach offers an approximation of the optimal
solution (or several of these), which suggestion(s) might not actually be optimal
(but will be nearly so). An alternative approach is to do analyses that will inform any
decisions about priorities. In this, the aim is to consider the alternatives and provide
some information about the relative merits of alternative choices—but without
actually making a choice (i.e., the choice is left to the practitioner).

We will touch on all three approaches but focus on the last approach, decision
support: providing objective information in support of decision-making. The logic in
this is that many of the steps are the same, whether informing or optimizing. But
many management decisions are not optimal but rather defensible given the partic-
ulars of the decision-making process. In land protection, for example, which prop-
erties are conserved depends on the conservation value of the sites. . .but this also
depends on many other realities including landowner willingness to participate and
available funding. The logic of decision support, in this context, is to inform the
decision while retaining flexibility given all of the other variables that influence
decisions.

Let us begin with the relatively straightforward task of selecting a set of candidate
sites to constitute a nature reserve system. The goal of the reserve system is to
include all of the targets (e.g., one occurrence of each species), in a minimum set of
reserve sites (e.g., number of sites or total area or overall cost). This is known as a
“covering” or “minimum representation” problem (Margules and Pressey 2000;
Possingham et al. 2002; Moore et al. 2003). There are many ways to solve this
problem, ranging from simple algorithms that can work by inspection of small
systems to formal optimization procedures that require specialized expertise and
software. Here we focus on an intuitive approach that will lead naturally to exten-
sions we will consider later in this chapter.
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8.2.1 Optimization (and Approximations Thereof)

There are various solutions to the minimum representation problem (Possingham
et al. 2002). These include linear programming methods for optimization and a
simulated annealing technique that works by iteratively refining an approximate
solution.

Optimization: Linear Programming Linear programming methods (see over-
views by Moore et al. (2003) and Onal and Briers (2006)) find the exact (optimal)
solution to the minimum coverage problem, by posing this as an optimization that
maximizes a single objective (e.g., representing all targets) while minimizing a
constraint (e.g., total cost or area). This approach suffers two drawbacks: (1) it is
computationally demanding and so is feasible for only smaller problem sets (but see
below); and (2) the method is essentially a “black box” to most end users and so is
difficult to interpret and communicate. Some conservation organizations explored
optimization decades ago but largely abandoned the approach in favor of less
demanding and more intuitive methods.

Computational complexity is becoming less problematic given modern comput-
ing power. Newer implementations of the approach (Hansen et al. 2022) are much
more promising, as clever coding allows the approach to be extended to multiple
objectives (e.g., by coding a second objective as a function of the first).

Approximately Optimal: Simulated Annealing An alternative to strict optimiza-
tion is an approximate solution to the optimal solution. One popular implementation
of this approach is MARXAN (Possingham et al. 2002; Ball et al. 2009). In this, the
program attempts to optimize a set of objectives subject to a set of constraints. In
MARXAN, the aim is to minimize an objective function defined as the sum of:

» Cost per site (sites are termed “planning units’)

* A user-provided penalty for not meeting conservation targets (e.g., not capturing
all species; priorities for species or targets may be defined via a “species protec-
tion factor” that favors some targets over others)

* An optional user-provided penalty for not meeting a total cost threshold

* Optionally, a user-provided premium on boundary lengths shared among
selected sites

* Optionally, other considerations (minimum parcel size, distances among sites)

The boundary length option was originally intended as a means of increasing
connectivity, but in effect it tends to generate compact clusters of adjacent sites—
efficient for stewardship and management but not really connectivity in the common
use of that term. Newer approaches with MARXAN contribute more directly to
connectivity (Daigle et al. 2019).

The penalties and other modifiers are specified in a common currency for
programming convenience, and there is some craft to specifying these. Fortunately,
the software is very well supported (https://marxansolutions.org) and there is a large
and international users group who also helps support applications.
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The MARXAN algorithm, termed simulated annealing (a reference to metal-
working, in which iterative heating and cooling temper or harden the metal), is a
successive approximation method. In this, sites are randomly entered into or
removed from the solution set (reserve system), with changes evaluated in terms
of the objective function. Rather large and random changes are allowed initially, but
later in the process, the thresholds for allowable changes and the retention of these
become more restrictive (this is the “annealing” bit). At the end of the process,
MARXAN uses a greedy heuristic (see below) to “finish” the solution. The end
result is a solution that is nearly optimal; but the approximation algorithm (like all
such methods) cannot guarantee an exact solution. By contrast to strict optimization,
the approximation is very fast and can handle very large data sets.

In practice, the model typically is run many times, and a count of how often each
site is selected as part of the solution is tallied. This tally, converted into a proportion,
is termed “summed irreplaceability.” Sites with very high value are nearly always
selected (a site with a score of 1.0 would be in every solution, hence “irreplaceable”),
while sites with very low scores would be, by consensus, of low conservation value.
The advantage of the collection of solutions is that the end user is provided with a set
of highly ranked sites, with some flexibility in terms of protection priorities.

8.2.2 The Greedy Heuristic Algorithm

A greedy algorithm is one that finds a solution as rapidly as possible (most numerical
approximation algorithms are greedy). A heuristic algorithm “learns” as it pro-
gresses, so that later decisions in the process depend on decisions at previous
steps. A greedy heuristic algorithm finds a solution quickly, by making at each
step a decision that is optimal (although perhaps not uniquely so) given the previous
steps.

The algorithm can be explained using a simple example. Consider a set of six
candidate sites that collectively support seven species (Table 8.1). Inspection of the
data matrix indicates that site 6 should be selected first, as it has the most species
(four). For the second step, the algorithm now looks at the remaining sites and tallies,
for each site, the number of new species it holds—species that are not already

Table 8.1 Hypothetical example of site selection via greedy heuristic algorithm

Site SppA  |B C D E F G Sum
1 1 1 1 3
2 1 1 1 3
3 1 1 2
4 1 1 2
5 1 1 3
6 1 1 1 1 4

Sites would be selected in order 6, 5, or 1 to capture all species on as few sites as possible. Bold
entries are the novel species added at each step
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Table 8.2 Species by site for the Columbia Plateau ecoregion (excerpted from Table 17.1 from
Possingham et al. (2002))

Species Site 2 3 5
Loggerhead shrike 1 1 1
Western burrowing owl 1 1 0
Grasshopper sparrow 1 0 1
Ferruginous hawk 1 1 0
Sage thrasher 1 1 0
Western sage grouse 1 0 1
Sage sparrow 1 1 0
American white pelican 1 1 0
Bald eagle 0 0 1
Forster’s tern 0 1 0
Total species richness 8 7 4

Only three of the ten sites are shown from the original. (Copyright Springer-Verlag, permission
conveyed via Copyright Clearance Center, Inc.)

represented in the reserve system (i.e., on site 6). While there are three sites with
three species each, some of these are already on site 6. Site 5 has two new species
and is selected next. This updating then repeats, and we search for the site that will
provide the most new species that are not already represented in the reserve system
(i.e., on either site 6 or 5). The third site to be selected is site 1, which provides a
single new species. At this point, the reserve system is complete in that it has all
seven species. This example illustrates both aspects of the greedy heuristic algo-
rithm: at each step, the relative merits of other sites depend on which sites (and, so,
which species) have already been made (the heuristic part), and because the biggest
improvement is selected at each step, the algorithm finds the solution as quickly as
possible (the greedy part).

To be clear, in this example all species are considered equivalent in terms of
conservation value. We will revise this assumption shortly. The criterion is simple
species richness, and the objective is to maximize this in the fewest sites.

The key to a greedy heuristic is complementarity (Kukkala and Moilanen 2013).
The best site, at any iteration, is the site with the highest value on the criterion (here,
species richness) while also being as different as possible from sites already in the
reserve system. These are the sites that confer the most novel contribution of value.

The greedy heuristic approach is appealing in its simplicity, and indeed, for small
systems the correct solution can often be identified easily by inspection. A drawback
to the approach is that it is not guaranteed to find the correct answer—even for small
systems. Possingham et al. (2002) illustrated this failing with a simple example of
ten species on eight censused sites (Table 8.2). The problem arises, in this case,
because the logical first choice—the site with the most species, site 2—has species
that are completely redundant with other sites. In this example, two other sites (3 and
5) would support all the species, making the logical first site unnecessary. This
failure is not peculiar to this case but typical of all sequential solutions to the
minimum representation problem (Possingham et al. 2002).
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8.2.3 Extensions to Greedy Heuristics

While the greedy heuristic algorithm is an imperfect solution to site prioritization, its
simplicity makes it a useful as a means to illustrate more general issues in site
prioritization. These extensions include a variety of other criteria invoked as objec-
tives for conservation. A partial list (adopted loosely from The Nature Conservancy
1996; Groves et al. 2002) might include the following:

* Ecological uniqueness: Species rarity, endemism, or vulnerability to natural or
human-caused stressors; here, the logic is that uniqueness confers a higher
conservation value.

* Habitat geometry: Patch size, core area, edge or perimeter length, or other aspects
of patch shape or configuration; these concerns are often motivated by edge
effects that confer a higher conservation value to larger or more compact (less
edgy) sites (reviewed by Urban 2023, Chaps. 7 and 8).

» Connectivity: This might refer to large-scale connectivity, near the scale of the
geographic range of a species; more locally, permeability might be the focus, as it
affects local movements (Anderson et al. 2016, 2023). In either case, higher
connectivity confers a higher conservation value.

» Threats: Regional pressures such as encroaching human development, or, more
recently, climate change; the relative conservation value of sites under high threat
might be equivocal: practitioners might react to threat with greater urgency, or
they might be reluctant to invest in sites viewed as lost causes.

» Feasibility: Issues related to the logistics of acquiring (cost) and protecting the
site (including long-term stewardship). Beyond costs, sites that are adjacent to
other protected sites are often easier to manage and steward over time—a simple
matter of travel time and efficiency.

Each of these can be addressed using a greedy heuristic algorithm, with some
minor modifications. For example, species rarity can be targeted, for small systems,
by inspection; this amounts to targeting species that occur on only a single site first
and then complementing these sites with other sites that offer new species that are
less rare (Possingham et al. 2002). More generally, if each species is coded in the
data table with a “rarity score” that takes on larger values for rarer species (e.g., a
score of “10” meaning 10 times as rare as a common species with a score of 1), then
the simple greedy heuristic outlined above would capture rare species first and
common species only after the rare species had been accounted. Any scoring scheme
that scales the same way could work similarly for endemism, vulnerability, or other
attributes of concern.

Habitat geometry or condition can be used in a greedy algorithm easily, if the
conditions are coded as relative or effective area. In such cases, a greedy pursuit of
total area will accomplish one such aim. Beyond this, if core (interior) habitats are
more valued than edges, then tallying core area instead of total area will do what is
desired. For habitat condition, habitat suitability as modeled on a scale of [0,1]
(as with many species distribution models; Chap. 2) can be used as a proxy for
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Fig. 8.1 Greedy algorithm for connectivity, as illustrated by the construction of a minimum
spanning tree for a set of sites. The selection is for the shortest connecting distance from any site
to any site already in the reserve system. Here, that sequence is DE, DF, DC, CB, BA. Dotted lines
are candidate connections that are not part of the minimum spanning tree

effective area. That is, if each cell in a (raster) habitat patch is coded on [0,1], then the
sum of those suitabilities is essentially an effective area: a 1-ha patch of cells with
suitability 1.0 has effective area 1.0, while lower suitabilities result in a lower
effective area. Any estimate of suitability can be used this way, so long as it scales
appropriately as effective area.

Habitat connectivity is an intriguing illustration of this general algorithm. For
example, consider a set of candidate reserves that are at various locations within the
study area. One way to maximize connectivity of the reserve system would be to
minimize the collective distances between pairs of sites in the system. How to find
this connected set? If we tally the distances between pairs of candidate sites, then a
greedy heuristic algorithm that minimizes the distance from a new site to any other
site already in the system will accomplish the objective. That is, begin with the pair
of sites that are closest together. Then add to the system the site that is closest to
either of the sites already in the system and so on. This process assembles a minimum
spanning tree for a graph of the reserve system (Urban and Keitt 2001), and indeed,
this is the classic and optimal algorithm for finding a minimum spanning tree (Prim
1957; Fig. 8.1). (As with any sequential solution, it is also true that this algorithm
will find @ minimum spanning tree but not necessarily a unique one.)

The emphasis here on greedy heuristics is not because the approach is infallible,
but rather because it is intuitive. Importantly, the heuristic aspect of the algorithm
also emphasizes that it is the relative change or marginal value provided by a site that
confers its value to the reserve system being assembled.

Urban (2002) devised a decision support tool, PORTFOLIO,' for conservation
planning that is based on a multi-criteria implementation of a greedy heuristic
algorithm. The program includes estimates of several components of conservation
value:

'The name is deliberate, to connote a reserve system as a collection of holdings with various risks
and rewards. The aim is to maintain a balanced portfolio. The software is available from the author.
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» Species richness, as a simple tally of the number of species. In a greedy algorithm,
only novel species not already in the reserve have incremental value. That is, the
focus is on complementary richness.

» Species rarity, based on a user-defined estimate of relative rarity (higher scores
for rarer species). Rarity can be scored simply (any supplementary rarity is good)
or as complementary rarity (only novel rarity is scored).

* Habitat patch geometry or condition: as discussed above, any measure of total
area, core/edge geometry, or habitat condition, expressed in terms of relative or
effective area.

» Connectivity: from graph-based models, the algorithm attempts to maximize:

C=) > AAP; (8.1)
i

for all sites i and j in the system, based on habitat areas A and dispersal likelihoods
Pijzekdi/ (82)

for between-distance dj;. Here, k is a distance-decay coefficient (k < 0.0) that
describes how steeply dispersal likelihood decreases with increasing distance. This
approach is similar to the approach for a minimum spanning tree (Fig. 8.1) but
includes terms for a “donor” as well as a “target area” effect (Hanski and Ovaskainen
2000). The aim is to maximize total (probabilistically) connected area.

The program also accepts optional indices of site-level habitat heterogeneity or
environmental buffering capacity, threat, and acquisition cost. At each iteration, the
program displays the incremental change in each metric that would result from the
addition (or removal) of a candidate site in the reserve system. The user is prompted
to choose a next site, and the process updates.

Backward and Stepwise Greedy

One useful embellishment of the greedy algorithm is incorporated into PORTFO-
LIO. This is the capacity to run backward. That is, once a few sites are included in
the reserve system, the program also tallies the relative (incremental) values that
would obtain if any site already in the reserve system were to be removed. Thus, the
common result with a greedy algorithm—that a site chosen early in the process
might become redundant later—is solved by allowing redundant sites to be
discarded or swapped for another site.

The backward approach to a greedy algorithm is important in another instance.
With connectivity, for example, a small stepping-stone patch might not contribute
substantially to overall connectivity if considered as an incremental addition to the
reserve. By contrast, that stepping-stone—if it connects sets of patches that are
themselves locally connected—can show an enormous impact on overall connectiv-
ity if deleted (red patch in Fig. 8.2). This result reflects a subtle but important shift in
focus in this algorithm: the focus can be on site-level criteria (i.e., incremental values
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Fig. 8.2 Tllustration of the relative importance of local as compared to regional connectivity, in the
context of variation in patch size and habitat quality. Patches might be valued due to habitat quality
(green patches), local connectivity (blue), or long-distance connectivity (red). In particular, the red
patch’s value can be seen most readily if it is removed from the system, disconnecting the patches
on the left side from those on the right

of sites); or the focus can also reflect the role of individual sites in the larger context
of the reserve system (Eq. 8.1). Stepwise processing is not crucial to discovering
sites with network-level importance—but it often makes it much easier.

This approach is equivalent to a “full stepwise” approach to multiple regression,
which greatly expands the capacity of the algorithm to explore the relative value of
sites in the larger context of the reserve system (Urban and Keitt 2001). For example,
this approach might be used to assess the contribution of sites to erosion potential or
watershed protection (both of which are context-dependent), or to explore viewsheds
(again, context matters).

PORTFOLIO was intended primarily as a teaching tool, and it nicely illustrates
many of the issues that arise when attempting to assemble a system of reserves. At
the simplest level, the selection protocol emphasizes the incremental value
represented by any single site. But these incremental values can be hard to isolate
in the aggregate. For example, sites that are valuable for any given reason (e.g.,
richness, rarity, or connectivity) might also be valuable for other reasons. These
instances of leverage or co-benefits are not part of the greedy algorithm (although a
decision support tool should reveal them). In PORTFOLIO, these instances often
arise when there are sites that are tied in terms of their value on a given attribute and
so invite further consideration of “tiebreaker” rules. For example, we might target
species richness but invoke rarity or connectivity in cases where candidate sites offer
the same incremental value on richness. Reciprocally, the greedy exercise often
reveals that focusing on one criterion rather than another (e.g., richness versus rarity,
rarity versus connectivity) leads to competing objectives that imply a need to make
trade-offs among the objectives.

These two key concepts—marginal values and multiple, competing objectives—
provide an easy entry into the realm of structured decision-making and multi-criteria
decision analysis (Huang et al. 2011, Gregory et al. 2012; Hemming et al. 2022).
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This framework underlies much of site prioritization, although the tools might not be
invoked explicitly in decision-making.

8.3 Structured Decision-Making

Structured decision-making, as the term implies, is a process for injecting rigorous
logic and transparency into decision-making (Clemen 2001; Gregory et al. 2012;
Johnston et al. 2015; Hemming et al. 2022). The aim is to contrast a set of
management (decision) alternatives in terms of their relative (marginal) values on
each of several criteria or objectives. This is a large topic with a variety of
approaches, but it can be summarized in a few key steps. These steps include
(1) defining the problem clearly, (2) identifying alternative actions and the likely
outcomes of these actions, and (3) defining how these alternatives will be evaluated
(Johnston et al. 2015).

The framework invites a large set of processes and supporting tools (Hemming
et al. 2022), but we will focus on a few key pieces:

1. The objectives and how these will be measured (an objectives hierarchy)

2. A model that suggests how the alternatives will effect changes in the objectives
(a means-ends model)

3. A summary table or decision matrix that captures this information to inform the
decision

The overall workflow implied by these steps underscores the discrete components
of the analysis while also emphasizing the iterative and adaptive nature of the
process (Fig. 8.3). This is also a simplified version of the process, in that in real

Problem?

/ p-
Objectives | —> Objectives

hierarchy
«— Monitor l

T Alternatives | —> Means/ends

diagram
[ Report J¢—{ | Decision [
‘\ Consequences —> Decision
1 table

Fig. 8.3 Workflow for site prioritization, as a structured decision-making process. This process
maps neatly onto the adaptive management framework, in that it begins and ends with an explicit
consideration of overall goals and whether these are being met
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applications, there are often iterative revisions that would be represented more
honestly (if messily!) by additional arrows connecting most steps of the overall
process. And while this workflow applies to structured decision-making, it might
also apply to site prioritization more generally.

8.3.1 Objectives Hierarchies

An objectives hierarchy outlines the objectives in terms of a larger, overarching goal
while also indicating how each objective will be measured. For example, an objec-
tives hierarchy for a conservation program might identify biodiversity preservation
as its goal. Specific objectives might include biodiversity itself, as measured in a
variety of ways: species richness, rarity, endemism, or (lack of) exotic or invasive
species; alternatively, one might index biodiversity potential in terms of biophysical
proxies or habitat variety. Similarly, one might consider habitat geometry in terms of
size, shape complexity, or amount of edge. Conservation planning also addresses
spatial context, such as encroaching developing threats or habitat connectivity
(Fig. 8.4). Again—though for simplicity the diagram does not show this—objectives
are directional: the aim is to increase or decrease the values that measure the criteria
(attributes). That is, we want to increase richness or rarity, increase the variety of
proxies, increase patch area, decrease edge, increase connectivity, and decrease
threat. Objectives also are specific in terms of desired change (how much) and
timescale (how soon).

The specific indices used to measure objectives are indicators or indicator vari-
ables. Good indicators in general, and ecological indicators in particular, share a
number of attributes: they are quantifiable with low measurement error, are dis-
cretely scaled and repeatable over time and space, have low observer bias, and—

Goal Conservation Value
Objectives Biodiversity Patch Geometry Landscape Context

Indicators | Richness | [ Patch area |
| Rarity | [ Coreledge |

Fig. 8.4 An objectives hierarchy for conservation planning, targeting three objectives, each with
two or more empirical indicators. This scheme corresponds to the decision support tool PORTFO-
LIO (Urban 2002). Here, ovals represent concepts, while rectangles are empirical indicators
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most importantly!—capture the information they are intended to -capture,
unambiguously.

In an objectives hierarchy used for decision-making, it is also important that the
indicators (and the objectives they serve) are logically separable in that they repre-
sent qualitatively different things of interest (i.e., not redundant measures of the same
thing). For example, in Fig. 8.4, the indicators for biodiversity, patch quality, and
landscape context can be separated logically and empirically.

Devising an objectives hierarchy can get subjective, in cases where it is not clear
whether two indicators both apply to the same objective or if they are sufficiently
distinct as to warrant being separate objectives or sub-objectives. For example, in
Fig. 8.4 are connectivity and threat both indicators for a common objective, land-
scape context? Or might these be elevated to the level of objectives? The means-ends
model (below) can help guide this choice about representation. Keeney and Gregory
(2005) offer additional guidance on choosing how to measure objectives. In practice,
the act of declaring the hierarchy—especially if done in open collaboration with
other stakeholders or decision-makers—can help guide these decisions.

The identification of objectives and indicators recalls factor analysis (Chap. 4),
although in an objectives hierarchy these indicator relationships might not be
developed statistically in the formal way that factor analysis is conducted. The
relationship between objectives and their indicators also evokes the relationship
between latent variables and their indicators in structural equation models (Chap. 7).

An objectives hierarchy is a simple, graphic declaration of what is valued in the
decision context: it summarizes what we want to accomplish and why. The means-
ends model (below) describes how we will accomplish these objectives.

8.3.2 Means-Ends Models

Path models are diagrams that show how management actions (or policy alterna-
tives) effect a change in the criteria identified in the objectives hierarchy. These
models go by many names (e.g., path models, causal chains; see Qiu et al. (2018)),
but means-ends models nicely convey their purpose in illustrating how management
options (the means) might achieve the objectives (the ends). While the objectives
hierarchy is a static measurement model of what we want, the means-ends model is a
process model that focuses on actions and their consequences, of how we might get
what we want.

It might be apparent here that the process of generating an objectives hierarchy
and a means-ends diagram is exactly analogous to the prototype modeling stage in
the workflow of structural equation modeling (Chap. 7, Fig. 7.5 and Sect. 7.3.3).
What is different here is that the means-ends model might not ever be implemented
and parameterized from data: it is often used simply as a way to organize the logic of
the decision process (but see below).

Consider the specific instance of an objective to increase bird species diversity.
We might envision a variety of paths (Fig. 8.5). In one case, increasing habitat patch



226 8 Site Prioritization

More total %
habitat area

Add buffer area Invoke species-

to habitat patch area effect \ )
,,,,,,,,,,,,,,,,,,,,,,,, more area-dependent species
Improve core- | _—7 Better birds

edge geometry less predation, brood parasitism

Fig. 8.5 Path diagram to show how adding habitat area might lead to higher bird species diversity.
Top (green) paths: More total area supports more birds overall, which should lead to more species
via passive sampling; this would also support more species that require large habitat patches.
Bottom (red) path: Reducing edge would lead to reduced nest predation and brood parasitism
(both edge effects) and so help support species vulnerable to these pressures. The diagram makes
clear that the result of buffering patches is mediated by three distinct mechanisms

size or total habitat area would increase the number of individual birds, and, by
chance, we would expect to find more species (a sampling effect implicit in the
species-area effect; see Urban (2023), Chap. 5). We would also expect to support
more species that have larger area requirements because they require large nesting
territories or forage widely (e.g., raptors). By contrast, if we were to manage patch
buffers to reduce forest edge, we might expect to reduce nest predation and brood
parasitism by edge species and thus increase the likelihood of supporting vulnerable
species (birds using low and open nests, or preferred hosts for brood parasites)
(Fig. 8.5, bottom tier).

This example also illustrates two important points about how means-ends models
and objectives hierarchies relate to each other. First, the objectives hierarchy con-
tains only the final targets, not any intermediary conditions. That is, the hierarchy
makes clear how the ends relate to each other, but not how they might be met. The
path model makes explicit the way that we think managing habitat geometry might
help us meet our objective in terms of bird diversity: we could increase patch size, or
buffer edges, to improve patch geometry. There would also be path models for the
objectives related to the other objectives in the hierarchy, i.e., diversity and land-
scape context (Fig. 8.4). These ultimately could be combined into a single (busy!)
path model.

Second, the path diagram makes clear why we might choose to include two
different indicators related to bird diversity: it is because different species are
affected via different paths in these two examples, and so these are not redundant
indicators. Likewise, a path model about landscape context would invoke different
mechanisms for the effects of threats as compared to connectivity (although
encroaching development might also influence connectivity).

It is worth underscoring that the path diagrams shown here are mostly conceptual.
While based on reasonable expectations based on decades of research on birds in
forest patches (Urban 2023, Chaps. 5, 6 and 7), it would be better to develop the
model more fully so that it is empirical (e.g., as a regression) and so capable of
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predicting changes in species diversity given specific management actions. The end
result of this process might be a structural equation model (Chap. 7) capable of
predicting the consequences of management actions as these propagate through the
system.

Current conservation applications tend to rely on conceptual diagrams more than
fully parameterized structural equation models. But there is some movement toward
increasing the rigor of the conceptual models, including efforts to quantify confi-
dence in the component paths or submodels (e.g., Qiu et al. 2018). Evidence grading
is one example of this trend (e.g., Tallis et al. 2017). In this, each component (path)
of the conceptual model is assessed in terms the empirical evidence supporting
it. This evidence might range from expert opinion (rigorously elicited) to formal
meta-analysis from systematic reviews.

That said, practitioners do use, directly or indirectly, a wide range of models in
support of conservation planning and decision-making. Zurrell et al. (2022) provide
a useful review and synthesis, along with some guidance on applications.

8.3.3 The Decision Matrix

The aim in structured decision-making is to generate a table or decision matrix that
contrasts alternative management options in terms of their expected effects on the
specific indicators for the objectives. One way to arrange this is as a table with
objectives (indicators) as its rows and management alternatives as the columns.

In the hypothetical example being developed here, we might want to contrast a
management action that increases habitat patch area by making existing patches
larger and more compact (e.g., by buffering them and reducing edge), compared to a
plan to increase connectivity by connecting existing habitat patches via stepping-
stone patches or corridors (e.g., wooded fencerows or corridors created by
reforesting riparian zones). The other option would be to do neither, a business-as-
usual default. A decision matrix would summarize these contrasts (Table 8.3). As
neither management alternative concerns biophysical proxies or threats (as in
Fig. 8.4), these criteria are not included in the table.

Note that we have included two indicators each for diversity and habitat geometry
and one for connectivity (Eq. 8.1). The initial task is to fill in the cells of the table
with estimates of the changes—in ecological units—expected from each of the
alternatives. The “do nothing” scenario might be rather uninteresting unless we
actually expect changes if we do nothing (e.g., if encroaching development implies
a loss of species if we do not act soon). To fill in the table, we would need empirical
estimates of the changes we would expect in each instance. This is, of course, why
we would like to implement the means-ends diagram as an actual, working model! It
is worth emphasizing that many forms of models might meet this need: expert
systems, regressions, or simulation models might all provide the desired estimates.
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Table 8.3 A decision matrix template for the hypothetic case of two management options to
attempt to increase conservation value

Indicator Do nothing Buffer area Corridors

Richness
Rarity
Habitat area
% edge
Connectivity

Weighting Schemes: Multi-attribute Utility Theory

Decision analysis borrows heavily from multi-attribute utility theory (MAUT);
indeed, it might be useful to think of multi-criteria decision analysis as an applied
version of the more abstract MAUT (Gregory et al. 2012). An important step in this
analysis is quantifying the relative importance or value of the alternatives itemized in
the decision matrix (Table 8.3).

There are various ways to do this. Because we are developing examples that
include multiple objectives as well as multiple indicators for each objective, we will
adopt a two-stage approach to weighting. In the first stage, we will quantify the
relative contributions of each indicator to a given objective. In the second stage, we
will weight the objectives themselves. In practice, these stages are often combined
but it will be helpful here (perhaps!) to separate them.

Typically, the first stage amounts to creating a weighting scheme that links the
indicators to their objectives. Perhaps the most common approach is a simple
weighted sum as an estimate of the score S for each site or option for an objective:

S=wix; + woxy + w3xz + - 4+ wpx, (8.3)

where the w’s are weights for each indicator x. The weights are usually normalized or
relativized to yield scores on [0,1] or [0,100], to make it easier to compare scores
across objectives.

In the second stage, the objectives are weighted to reflect the decision-maker’s
relative preferences across objectives. To be clear, the decision-maker or stake-
holders prefer all of the objectives—that is why they were selected as objectives at
the outset. But in instances where all objectives cannot be met simultaneously, one
has to declare their relative importance. In practice, we might use another weighted
sum (Eq. 8.3) to assign weights to each objective. The result of this second stage of
weighting is a final score or ranking for each site, reflecting its performance on each
of the objectives and on each of the indicators for each objective. Again, this can be
done in a single pass but at some risk of loss of clarity.

In terms of decision support, the use of a weighting scheme is a substantial change
from the starting point of ranking candidate sites on each criterion separately. To
return to the example software PORTFOLIO, at each iteration of the decision
process (choice of a site), the relative value of each site on each criterion (indicator)
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is displayed, and the user chooses a site. In this, the user decides how to weigh the
different indicators and objectives and then makes a decision; then the process
repeats. Using an overall weighting scheme provides a means of combining objec-
tives and declaring a relative importance of these in the aggregate. But this combined
weighting also might obscure important differences among sites. And again, the
relative merits of different objectives themselves might change as a portfolio of sites
is assembled: e.g., diversity might be the initial focus, with connectivity coming into
play after the rarest species are accounted. We return to this issue below.

Weighting Schemes: Geospatial Models

A common implementation of multi-criteria site prioritization is done in a geo-
graphic information system (GIS). In this, each candidate site or parcel is character-
ized in terms of geospatial indicators for the various objectives of the application. In
the GIS, the attribute table for the candidate sites (e.g., as a set of parcel polygons)
comprises a spreadsheet of all of these indicator variables, for each site. It is a
relatively simple matter to sort the spreadsheet on any selected column, to highlight
the highest-ranking sites on each attribute. It is also straightforward to invoke “map
algebra” to assign weights to each attribute (Eq. 8.3), to compute a weighted sum as
an overall ranking among sites. This is a straightforward implementation of multi-
attribute decision support.

As an illustration, the Triangle Land Conservancy in central North Carolina has
four programmatic foci: protecting natural habitats, ensuring clean water, preserving
working farms, and connecting people to nature (www.triangleland.org). They have
prioritized sites on each of these criteria, using multiple geospatial data sources and
weighting schemes based on staff’s engagement with local stakeholders. These
rankings can be used separately or in combination; for example, overlaying the
habitat and water priorities reveals sites that rank highly on both objectives (and so
provide co-benefits) as well as sites that rank highly on only one objective (and
might invite trade-offs) (Fig. 8.6).

Implementing an objectives hierarchy via map algebra makes the weighted
averaging within objectives clear, in that some weighted combination will generate
a new GIS data layer that represents each objective. Similarly, a tool that assigns
relative weights to the objectives themselves helps make this decision transparent. In
practice, it is usually convenient to code the GIS model to make it easy to modify the
weighting scheme both within and across objectives. This makes it easier to explore
uncertainties about the weights, or to adjust the weights to particular decision
contexts.

In land conservation the funding options might be restricted to particular pro-
grams so that, for example, water quality projects are eligible for program funding
while species diversity projects are not. In a GIS model, it is straightforward to set
the weights accordingly, to reveal those sites that would be highly prioritized under
program guidelines.

Similarly, some funding sources might be restricted to particular jurisdictions
(e.g., co-managed watersheds, counties, or other administrative units). In a GIS, the
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Fig. 8.6 Geospatial site prioritization for the Rocky and Deep River catchments in the Triangle
region of the North Carolina Piedmont, USA. The color scheme highlights sites that are highly
ranked for habitat quality (red scale) as compared to water quality (blue scale); sites highly ranked
on both metrics, indicating co-benefits, are scaled to purple. Inset map shows watershed location in
central North Carolina, USA. Image courtesy Chloe Ochocki, Triangle Land Conservancy

decision context can be clipped to that jurisdiction so that only local sites are put
forward as options.

What is not as straightforward in this approach is the sequential nature of the
selection algorithm and how the rankings of sites might change as sites are selected
for protection for inclusion in the reserve system. To be clear, this approach of multi-
criteria prioritization via map algebra is greedy in the sense that it reveals the relative
ranking of alternatives in terms of the criteria. Often, this is sufficient for planning
purposes: the practitioner merely needs to have a list of high-priority site to pursue
over time. But a model implemented this way is not heuristic—the rankings are
static, at the time of the assessment. To be heuristic, the rankings need to be
re-evaluated at each iteration, to reflect changes in the decision context. This
updating needs to be done deliberately (i.e., probably manually) in the GIS-based
version of the approach. For example, to evaluate the value of a candidate site in
terms of species richness, a multi-attribute model would identify the site’s species
richness, but it would not know which of those species are not already represented on
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other sites in the portfolio. Likewise, a site’s importance to connectivity depends on
which other sites are in the network. . .and this information needs to be updated as
sites are accrued.

Algorithm: Recursive Site Deletion One way to make a simple multi-attribute
ranking system more sensitive to system-level status is to use a recursive site-
deletion algorithm (Keitt et al. 1997; Urban and Keitt 2001). In this, an index of
conservation value is tallied over the entire collection of candidate sites, and this
index is saved for reference. Then, each site is removed in turn, the index is
recomputed with that site omitted, and the difference between that index and the
(full) reference case is saved. Sites can then be ranked on the change in the index
resulting from that site’s removal. While Keitt et al. (1997) applied this to connec-
tivity, the approach can be generalized to any system-level measure: richness, rarity,
connectivity, watershed protection, viewsheds, and so on (Urban and Keitt 2001).

This approach could also be run in a forward-looking mode. Given a set of sites
already protected, and a set of new candidate sites for protection, each of the
candidates could be added to the system in turn and scored on the basis of its
incremental improvement to the overall network.

This approach would make a simple multi-attribute ranking system behave more
like a greedy heuristic algorithm, with each site’s value assessed relative to the rest of
the sites in the system.

In a simple sense, the weighted scores for the alternatives in the decision matrix—
however derived—suggest the “correct” decision: the highest-ranking alternatives.
But real applications are rarely so simple. In particular, applications can get com-
plicated when stakeholders enter into the decision process.

8.3.4 Ecological Performance and Stakeholder Preferences

The decision matrix above is interesting and might even be useful. . .but it is not the
desired endpoint here. What Table 8.3 summarizes is ecological performance, or,
rather, changes in ecological performance expected from each of the management
alternatives. The decision process might be driven simply by this ecological perfor-
mance, with the actual decision-making often done by an analyst or manager who is
essentially acting on behalf of some set of (presumed) stakeholders.

Here we expand the decision process to consider stakeholder preferences for the
potential consequences of alternatives implied by the means-end model. These
preferences are expressed at two levels. First, stakeholders might have different
reactions to varying levels of ecological performance on a given objective (e.g., for a
given change in bird species richness). Second, they might have different prefer-
ences for the objectives (e.g., richness or rarity as compared to connectivity). We
consider these two valuations in turn.
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Fig. 8.7 Schematic of the translation from measures of ecological performance (i.e., based on
ecological or biophysical indicators) to stakeholder preferences for those outcomes
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Fig. 8.8 Examples of utility functions. Concave downward (upper curve) implies “diminishing
returns” in stakeholder preference as ecological performance increases; concave upward (lower
curve) implies a greater marginal change is required to elicit the same level of satisfaction

In general, this next stage of decision analysis entails translating measures of
ecological performance into estimates of stakeholder preferences for those levels of
performance (Fig. 8.7).

Utility Functions

Relative stakeholder preferences for different levels of ecological performance are
typically estimated by dimensionless scales on [0,1], using utility functions
(Fig. 8.8). Utility is a measure of how much a person (or stakeholder group) favors
a given level of performance, as compared to other levels of performance. Perhaps
the simplest utility function would be linear, implying that utility increases in
proportion to ecological performance—“more is better” regardless of the actual
levels. In reality, utilities are often nonlinear and frequently concave downward to
reflect a common “diminishing returns” response. For example, while a stakeholder
might value an increase in species from 3 to 5 species, they might put less value on
the same incremental increase from 23 to 25 species. In some cases, the function
might be concave upward, which would imply that a bigger increase in ecological
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performance is required to elicit a change in stakeholder value (this might also reflect
risk aversion).

Utility curves might be hypothetical, but the aim is to estimate these empirically
from actual stakeholders or representatives of stakeholder groups. There are various
ways to do this. One simple approach is the ratio method. In this, the stakeholder
assesses different levels of ecological performance and assigns the lowest-ranked
alternative to an arbitrary score of 1. They then rank the other levels relative to this
baseline. For example, a level that is twice as favorable is assigned a 2; a tenfold
preference is given a 10; and so on. The rank scores are then re-relativized as rank/
(maximum-minimum), yielding scores on [0,1]. The elicitation can be done via
survey or face-to-face by a trained facilitator.

There are other ways to estimate utility (Clemen (2001), Gregory et al. (2012);
and Huang et al. (2011) provide an overview). While some are perhaps appealing in
their suggestion of more quantitative precision, these also require more expertise to
implement (and see below). Here we focus on simple methods that can be used by
environmental managers without technical expertise in valuation or elicitation.

Monetizing Values

A different approach to stakeholder valuation is to attempt to monetize these values.
Tools include estimates based on market values, stated preference methods (will-
ingness to pay or accept), revealed preferences (e.g., contingent valuation), avoided
costs, and so on (reviewed in NESP (2016)). This approach to valuation—well
established in economics—makes explicit the value of performance provided.

This can be useful in cases where benefit-cost analysis (BCA; Boardman et al.
2006; Hanley and Barbier 2009) is desired or required. But monetizing can be
difficult to apply to nonmarket goods and services. Biodiversity is often problematic
in this way. And objectives that cannot be monetized easily are often simply ignored,
(i.e., defaulting to no value). We return to this issue shortly. In the USA, additional
federal guidance has recently been provided to help practitioners incorporate eco-
system services into BCA (OIRA 2024). There is a growing community of practice
supporting BCA (e.g., www.benefitcostanalysis.org).

It should be emphasized that utilities elicited in any way are particular to the
levels of ecological performance being considered (e.g., 2-20 bird species), the
stakeholders whose preferences are being solicited, and the time span that these
preferences are intended to represent. That is, these are particular to a specific
decision context in space and time, and should not be extended or transferred to
another context. Similar caveats apply to monetized values. Formal tools for extrap-
olating such preferences—so-called benefits transfer models—exist (e.g., Boyle
et al. 2010; Johnston and Rosenberger 2010, Johnston et al. 2015) but are beyond
the scope of our discussion here.

Preferences for Objectives

Just as different stakeholders might have different preferences for levels of ecolog-
ical performance, they might also have different preferences for particular objec-
tives. Again, to be clear, all objectives are preferred at some level, or they would not
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be declared as objectives at the beginning of the decision process. But stakeholders
might value these differently, especially when it becomes apparent that trade-offs
will need to be made. That is, one might value actual bird species diversity more than
potential diversity as indexed by biophysical habitat proxies; another might put a
higher premium on connectivity than diversity; most birders, of course, prefer rare
birds to common species.

Relative preferences for objectives can be elicited in the same way that utility
functions are estimated. Again, a ratio method can be used (as above), or the
objectives can simply be weighted using a “slider bar” technique that allocates
relative preferences within the constraint that the values must sum to 1.0.

Geospatial Models, Revisited

It might be instructive here to revisit common practice in implementing multi-criteria
ranking systems in a GIS. In geospatial models, the first set of weights is applied
within an objective, by specifying the relative importance of the indicators to the
aggregate value of the objective. As MAUT (Eq. 8.3) suggests, a common scheme is
linear—which is to say that incremental changes in the indicators convey a linear
increase in the objective score. An alternative is to subjectively bin the scores into
categories or ranges of values on the indicators. This frees the user to apply nonlinear
schemes to the scoring function (as in Fig. 8.8), with the caveat that the rationale and
details of these assignments might not be transparent to others. Again, in such
models the assignments typically are assigned by the practitioner/programmer,
rather than by stakeholders.

Another issue with GIS-based ranking tools is that it is often not obvious what the
values represent. Explicitly, rankings based on a weighting function (Eq. 8.3 or user-
defined) rate each site relative to the other sites—scores are scaled relative to the
scores observed over all sites (i.e., scaled between the minimum and maximum
values observed over all sites). But these are not incremental or marginal values
compared to other sites; they are free of that context. It also is not clear what the
counterfactual might be in many instances: is the value of a site scored relative to its
being lost (e.g., developed) or is relative to its current management (i.e., without
formal protection)?

These considerations do not negate the value of geospatial models of this sort; but
they do invite a full explanation of the process and what the relative scores represent.

Models that accept user-specified weightings for alternative objectives are more
closely aligned with structured decision-making, as it is much easier to invite
different weightings of the objectives to illustrate the consequences to the rankings.
It is recommended that examples of alternative weightings be used to illustrate and
communicate these alternatives weightings as part of reporting and communication
(see below).

Decisions Under Uncertainty

Thus far, we have considered the decision process as if it were conducted under
certainty—that we have confidently estimated indicators and weights within and
across objectives. Real applications tend to be fraught with uncertainty on many
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points: imprecision in the empirical indicators, ambiguities about stakeholder pref-
erences, and so on.

Gregory et al. (2012) offer considerable guidance (especially their Chap. 8) to
decision-making under uncertainty. They note that there are two sorts of uncertainty
of concern here:

1. Epistemic uncertainties are about knowledge or facts. These stem from natural
variability in underlying processes, measurement error or bias in indicators,
model uncertainties, or disagreements among experts in their judgments about
available information. These uncertainties can be reduced, in some cases, with
more or better data. But these refinements are necessary only if more data is likely
to change the decision. In decision analysis, estimates of the value of information
are targeted precisely at this issue (Gregory et al. 2012; Bennett et al. 2018).

When more data cannot resolve epistemic uncertainties, practitioners can use
scenarios to bracket the decision space. In this, a set of contrasting scenarios are
devised to represent a reasonable range of expectations, and the decision analysis
then can assess the range of consequences. For example, we might devise a set of
scenarios based on a range of assumptions about development pressure or climate
change.

2. Linguistic uncertainties are about communication failures. These stem from
ambiguous terms, imprecise or value-laden language (e.g., if the same term
means different things to different stakeholders), or context dependencies. Lin-
guistic uncertainties, fortunately, can be minimized simply by being very careful
and clear about communicating. Shared reference points such as objectives
hierarchies, means-ends models, and decision tables are very helpful in this.

A critical point is that deliberations should be organized to provide insight into
the effect of uncertainty on the decision process itself and to guide the process
toward decisions that are as robust as possible. Again, Gregory et al. (2012)
provide several practical tools for dealing with uncertainty.

8.3.5 The Decision

The ultimate aim in structured decision-making is to populate the decision matrix
(Table 8.3) with stakeholder preferences for each of the options. The values tabled in
each cell of the matrix are the product of stakeholder utility for that level of
performance (i.e., relative to other levels of performance) and their preference for
that particular objective relative to other objectives. Summing these values over each
column summarizes relative stakeholder preferences for each management alterna-
tive being considered.

From a decision-making standpoint, it is tempting to force the decision to the
alternative favored in the decision matrix (i.e., assuming there is a clear “winner”). In
decision contexts where there is a single “decider,” this is a reasonable approach. In
this instance, an additional value of the decision matrix is that it documents the
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reason for the decision and in this way can help communicate this rationale to
stakeholders.

But in many instances, there might be multiple stakeholder groups with very
different preferences. While it might be tempting to somehow “average” these
preferences into a single aggregate decision matrix, it is often more useful to
generate multiple decision matrices—one for each stakeholder group. These com-
peting matrices can then be used to explore differences and, ideally, to find a way to
reconcile the differences. Even if the final decision goes against the preferences of
some stakeholders, the inclusive process and the information in the matrices can help
explain the rationale and so minimize feelings of disenfranchisement.

8.3.6 Reporting and Communication

One of the key values of a structured decision-making process is its objectivity and
transparency. By being explicit about the objectives and how they are weighted, the
decision process is essentially self-documenting. But for many real applications, the
process is still a bit messy because there might be several iterations in which
different preferences or weighting schemes are explored. Communicating all of
this information requires a systematic reporting process to match the decision
process. This must begin with a clear statement of the decision context:

What is the overall goal of the project? Who are the stakeholders? What are the
spatial domain and time frame of the decision process?

What are the specific objectives, to reach the goal?

What empirical indicators are used to capture the objectives, and which data were
used to estimate these (i.e., the objectives hierarchy)?

What stakeholder groups provided the weightings for the indicators, and how
were these assigned?

How were the likely outcomes of alternative management actions or policies
developed (i.e., the means-ends models)? What is the level of empirical confi-
dence in the models? Where are the greatest uncertainties?

How were objectives weighted relative to each other? Who made these
determinations?

The presentation of the decision process should detail which steps were followed
to arrive at a final decision. Often, it is helpful to show preliminary or partial results
to set the stage for the final assessment:

Rankings or maps of candidate sites in terms each of the objectives by itself (e.g.,
separate maps of sites ranked on diversity, area or patch geometry, connectivity,
etc.).

Rankings or maps based on combinations of objectives. These might include a set
reflecting equal weights across all attributes, or (as appropriate) different rankings
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reflecting the preferences of different stakeholder groups (or assumptions about
these).

If appropriate, illustrations of the sensitivity of the rankings to uncertainty or
imprecision in the weightings. These can be explored by “jittering” the
weightings in small increments, to gauge the robustness of rankings. Alterna-
tively, the decision can be analyzed using a range of weights representing
presumed lower and upper bounds. Ideally, the results would be robust to
minor imprecision or uncertainty.

The final weighting scheme and rankings implied by this, along with the justifi-
cation for the final decision.

Again, a huge benefit of structured decision-making is the transparent and
deliberate nature of the process and that it can be inclusive of stakeholders with
different preferences for objectives. Communicating this clearly is part of the
process.

In their review of 20 years of multi-criteria decision analysis applications, Esmail
and Geneletti (2017) suggested that practitioners were still somewhat lax in the
transparency of decisions (e.g., how weightings were generated), though applica-
tions have certainly improved over the years.

8.4 Targeting Ecosystem Services

Ecosystem services are goods and amenities that ecosystems provide to humans
(Daily et al. 1997). These include commodities (food and fiber), natural protections
such as flood regulation by wetlands or the reduction of wave energy by natural
shorelines, supportive services such as pollination, and cultural services including
recreation and spiritual values associated with open space or sacred sites (MEA
2005).

Recently, ecosystem services have emerged as a focus on conservation planning
and land management in general (Chan et al. 2006; Wainger and Mazzotta 2011;
Goldstein et al. 2012; NESP 2016; Watson et al. 2019). For example, in the USA
many federal agencies that manage land now consider ecosystem services explicitly
in their planning process (Ruhl and Salzman 2020; see Olander et al. (2021) for an
example from the US Forest Service’s Forest Planning process). Many
nongovernmental organizations (e.g., many land trusts) also use the idea (if not the
language) of ecosystem services to shape conservation plans. A large volume of
practical guidance has been developed, by academics and by agency practitioners
(e.g., NESP (2016), an online guidebook® geared toward federal agencies in
the USA).

2Much of the material in this section is adopted from the NESP (2016) guidebook (I was one of the
many coauthors).
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Targeting ecosystem services is a natural extension of the multi-criteria decision
framework outlined above. In particular, the use of the term “services” explicitly
demands that we identify the stakeholders to whom these services should flow
(Wainger and Mazzotta 2011). Watson et al. (2019) mapped the supply (production)
and demand (beneficiaries) of selected ecosystem services and showed that for some
(e.g., pollination), the beneficiaries could be far removed from where the services
were produced. Carbon sequestration is a service that benefits everyone on Earth
(no matter where the carbon is sequestered), while watershed protection has down-
stream beneficiaries (though these might be far downstream). Identifying beneficia-
ries is a major challenge in targeting ecosystem services, because each service can
benefit different people in different places.

Identifying the beneficiaries, in turn, invites their full participation as stakeholders
in the decision-making process. While this might seem obvious at this point of our
discussion, it has not been the primary mode of decision-making in most environ-
mental management settings. More typically, these decisions have been made on the
basis of ecological performance (real or presumed) and often by a decision-maker
authorized to act on behalf of stakeholders. This is not to say that such decisions have
been made poorly or in bad faith. Rather, the recent focus on ecosystem services
invites us to a fuller investment in structured decision-making as outlined here.

8.4.1 Benefits, Beneficiaries, and Stakeholders

One consequence of adopting ecosystem services as targets is that it invites the
presumed beneficiaries into the decision process earlier. In particular, this means
inviting stakeholders to participate in identifying goals and objectives, as well as
preferred outcomes. This is by contrast to an after-the-fact communication and
solicitation of stakeholder reactions to decisions that have already been proposed.
After the initial identification of alternative objectives and possible outcomes,
stakeholders return to the decision process in sharing their preferences for the
outcomes anticipated of the management or policy alternatives (i.e., as suggested
by means-ends models and as reflected by estimates of utility). At this point, a
heterogeneous pool of stakeholders might lead to a very different decision process as
compared to a decision made by an authority acting on an ecological mandate or
even on behalf of presumed stakeholders. For example, most land management
agencies have a rather narrow mandate—to protect species, to protect cultural
sites, to facilitate the allocation of multiple-use demands on public lands, and so
on. Exploring alternatives to a narrow mandate to be more inclusive of alternative
visions can be a positive outcome of stakeholder input (and see examples at the
website of the National Ecosystem Services Partnership, www.nespguidebook.com).
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8.4.2 Linking Ecology to Social Outcomes

A second consequence of adopting an ecosystem services perspective is that the
decision process entails an explicit switch from ecological performance values to
estimates of stakeholder preferences for those performance values, that is, embracing
not only the multi-attribute nature of the decision but also the utility aspect of multi-
attribute utility theory, a fuller version of structured decision-making (Gregory et al.
2012). In this, there is a necessary hand-off of the decision from natural scientists to
social scientists.

While this is as it should be—a fully interdisciplinary solution—it can also be
problematic because many agencies or decision-makers lack the expertise or capac-
ity to perform both the natural- and social-science pieces. For example, in the USA
many natural resource agencies are staffed primarily with natural scientists, and
might not have the expertise in valuation methods (whether based on utility or
monetization). This can severely limit the full implementation of structured
decision-making (Johnston et al. 2015).

Olander et al. (2017) addressed this bottleneck by recommending the use of
benefit-relevant indicators (BRIs). BRIs are natural-science indicators that are
framed in terms that should resonate easily with stakeholders. For example, we
might index water quality in technical terms such as dissolved oxygen, E. coli
concentrations, turbidity, or nutrient loadings (some of which measures might, in
fact, be legally mandated). But most stakeholders would have limited appreciation
for these technical measures. A BRI more interpretable to stakeholders might be
limitations on whether or how much fish could be safely consumed from those
waters, or whether the beaches might be closed to swimming. Using BRIs, decision-
makers trained in the natural sciences might make better decisions, even without the
formal analysis of stakeholder valuation. Of course, ultimately we will need to build
capacity for including social-science methods in the decision-making process
(Johnston et al. 2015).

Another advantage of benefit-relevant indicators is that these can be used in cost-
effectiveness analysis of management or policy alternatives. While benefit-cost
analysis (BCA) requires a monetized value to stakeholders, cost-effectiveness anal-
ysis (CEA) is framed in terms of ecological uplift (change in performance) relative to
cost, e.g., how large a reduction in beach closures for a given cost. CEA can be
applied with any estimate of ecological performance. Cost-effectiveness stops short
of BCA but can lead to much more effective allocation of resources for conservation
(Naidoo et al. 2006; Messer and Allen 2018). A common reporting in conservation
practice is “bucks and acres,” which is simply how much land was protected for the
money spent. But this performance might be more usefully communicated with
BRIs. Many conservation organizations now report performance in these terms:
miles of hiking trails, stream frontage for fishing or recreation, and so on. These
measures are much easier to communicate effectively and they resonate more
strongly with stakeholders.
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8.5 Illustrations: The Means-Ends Process

In this section, we explore two illustrations of environmental management decision
contexts: stream restoration and forest management to reduce the risk of catastrophic
fire. In each, the emphasis is on framing the decision in terms of alternative
management options and the possible ecological consequences of each. In this, the
process seeks to expand the consideration of possible co-benefits or trade-offs,
relative to the focal objective. While each is a realistic decision context facing
managers today, the examples are hypothetical and focused on articulating the
decision options iteratively. The illustrations developed here focus on ecological
outcomes; the social consequences to stakeholders are not considered here—but
these would be the next step.

8.5.1 Example: Stream Restoration

Stream restoration might have multiple goals, ranging from ameliorating very local
issues within a stream reach (e.g., bank incision) to larger-scale issues of watershed
integrity. In this example, we begin with the local issue of improving stream
conditions to improve fishing but expand the example to consider ancillary
co-benefits and potential trade-offs. We will not specify an objectives hierarchy at
the outset, to emphasize that the process of exploring alternatives often can lead to
revised objectives: the process is iterative.

To begin, we want to improve fishing and we might posit that buffering the
stream with riparian forest could improve stream condition by shading the stream,
thus reducing temperature, increasing dissolved oxygen concentrations, and improv-
ing habitat condition for fish that require such conditions (e.g., native trout). This
buffering would also increase infiltration, reduce surface runoff into the stream, and
reduce sedimentation and other inputs (nitrogen, phosphorus, pollutants) into the
stream (Fig. 8.9, top tier).

The act of increasing buffer width along the stream also provides the possible
co-benefit of increasing habitat area (i.e., forest) and connectivity (as streams are
natural networks) (Fig. 8.9, middle tier). And so the management option to improve
water quality might also provide ancillary co-benefits in terms of biodiversity
support: riparian bird species along with other wildlife species, pollinators, and
SO on.

At the same time, expanding the riparian buffer increases vegetation cover and, in
particular, transpiring leaf area. In water-limited systems, the increased transpiration
from the expanded riparian buffer might actually decrease streamflow or water
available for other extractive uses (e.g., irrigation, municipal water supplies)
(Fig. 8.9, lower tier).

The net result of this is a decision context that must now weigh the possible
benefits of the management option on its intended purpose, as well as the



8.5 TIllustrations: The Means-Ends Process 241

iyt
quality, temp. ——> | Better fishing
co-benefit

Increase
N
riparian habitat | | _Better birding?

Increase riparian

buffer width \

trade-off

Increase
transpiration Less water

Fig. 8.9 Path model elaborating the possible ecological consequences of buffering a stream with
riparian vegetation. Beyond the implications for water quality, this action might also have
co-benefits in terms of riparian wildlife habitat while also risking a trade-off with lower water
yield (e.g., for irrigation or other human water uses)
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Fig. 8.10 Means-end diagram for the “fishing” example, expanded to consider another manage-
ment alternative, to directly manipulate in-stream habitat features. Solid lines are positive effects;
dashed lines, negative. This alternative also has implications for water yield but less so for riparian
wildlife habitat. By contrast, riparian buffers might increase water quality but decrease yield

extenuating circumstances (or unintended consequences) of ancillary co-benefits or
trade-offs. The value of articulating the path model is that it invites a full exploration
of these other consequences. In this example, the initial objective of improving
fishing has expanded to embrace other co-benefits and possible trade-offs. An
objectives hierarchy, assembled or expanded during the deliberations, might now
include fishing, birding, and water yield explicitly.

Of course, the real point of structured decision-making is to compare across
alternative decision options. For example, in this case we might wish to compare
the effects of riparian buffers with a more direct action to improve in-stream habitat
(e.g., by planting coarse debris or rocks to create deep pools). This expands the
means-end diagram to compare the two alternatives explicitly (Fig. 8.10).

In this illustration, the option of in-stream habitat manipulation has its own direct
effects on fishing (by creating pools that might serve as refugia during droughts), but
it also might have an influence on water yield. It will not influence riparian habitat or
transpiration.

To underscore the sequencing of this process, we began on the right side with an
end, to improve fishing. We then worked on the left side, to pose a means that might
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Table 8.4 Template for decision matrix corresponding to Fig. 8.10

Option Status quo Buffers In-stream
Fish caught # + +

Total birds # +

Rare birds # +?

In-stream flow cfs - +?

Under status quo are the units of measurement (cfs = cubic feet/second); these entries would all be
0’s for the status quo

lead to that end, by elaborating the mechanisms and processes in the middle,
the path.

We then explored the path to see if there were other potential consequences of the
action and swept from left to right to a new end (birding). This process iterated, back
and forth, until we had filled in the diagram. This process should be highly collab-
orative and often can be an intense learning experience.

In Fig. 8.10, the convention is that concepts are drawn in ovals and empirical
indicators are drawn in rectangles (recall the path models of structural equation
models in Chap. 7). Here, the diagram includes the means-end model (empirical) on
the left, while the right side of the diagram represents an objectives hierarchy that has
emerged from the iterative process of elaborating the means-end diagram. The
means-end model and objectives hierarchy are joined by the indicators.

Subsequent steps in the decision process would follow through on the means-end
diagram (Fig. 8.10) by first estimating the changes in ecological or hydrological
performance expected from each action (Table 8.4). These estimates would be in
ecological terms: fish caught, birds observed, and water flow.

In an actual application, Table 8.4 would be supplanted by several tables in the
same format. The first would capture ecological (or hydrological) performance, in
empirical terms as indicated in the table. These are difficult to compare directly, and
so a second table would be generated to capture stakeholder preferences for these
anticipated changes. Phrasing preferences in terms of utility would also translate
these to dimensionless units (e.g., on [0,1]) that can be compared across objectives.
Note that this processing is within objectives.

Next, the decision table would be converted into a table of stakeholder prefer-
ences across objectives. This is now a two-layer scoring so that, e.g., the entry for
“Rare birds” in each alternative column reflects (1) stakeholder preference for the
incremental change in rare bird observations given that management alternative and
(2) stakeholder preference for rare birds as compared to changes anticipated for fish
caught, total birds, or in-stream flow.

Again, it might be noted that in geospatial applications of this logic, what is
tallied is the expected contribution or value of a site in terms of each objective—and
probably not the incremental value of each site relative to the sites already in the
reserve system. That is, the focus is on multiple criteria but not so much on the
marginal-value aspect of site selection.
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8.5.2 Example: Forests and Fire Risk Management

In forests of the western USA (as elsewhere globally), forests are experiencing
increases in fire frequency and severity. This reflects decreasing fuel moisture as a
result of climate change, as well as (at least in the western USA) increasing fuel loads
as a result of decades of fire suppression. Forest management to reduce the risk of
catastrophic fire entails removing or rearranging fuels to reduce vertical connectivity
(e.g., by thinning the understory to remove ladder fuels) and to reduce horizontal
connectivity (i.e., to reduce fuel-bed contiguity). Reducing vertical fuel connectivity
is intended to reduce the chance that a surface (ground) fire might “crown” and reach
into the overstory, thus dramatically increasing fire infensity (how hot the fire burns,
flame length) and severity (impacts on the forest system, e.g., tree mortality).
Reducing horizontal fuel connectivity is intended to reduce the likelihood of fire
spread, reducing fire magnitude and (indirectly) fire severity.

The benefit of articulating these objectives in a means-end diagram is that it
invites a consideration of ancillary co-benefits or trade-offs (Fig. 8.11). For example,
altering the vertical structure of forests would be expected to have substantial
impacts on wildlife habitat diversity; e.g., bird species diversity responds strongly
to the vertical layering in a forest (MacArthur et al. 1961; see Urban (2023),
Chap. 4). Changes in horizontal structure of the forest might also affect wildlife by
influencing processes such as territoriality (based on identifiable and defensible
borders) or activity ranges. Finally, reducing forest biomass could have some impact
on transpiration and so might influence in-stream flows and water yield; this would
depend on where along hillslope gradients the management was implemented and
the extent to which the forest was water-limited previously.

The point of this example is that means-ends diagrams often invite expertise from
various disciplines that might not already collaborate. So, while forest fire ecologists
might interact regularly in devising and implementing fuels management treatments,
these experts might not be as engaged with wildlife ecologists or forest
hydrologists. . .much less the stakeholders affected by decisions related to fire,
wildlife, and water. Here the decision-structuring process invites this broader col-
laboration and engagement.

i Vertical fueléni—)iReduced crowning Hi Severity, intensity :.\
Manage fuels i = o
iHorizontal fuels—>1 Reduced spread —>! Fire magnitude :2

Wildiife diversity H

=
—>: Transpiration H: Water yield ~ —>(Watershed

Fig. 8.11 Means-end diagram for fire management in western forests. Here, the focus is on
reducing fuels (vertically and horizontally), but the diagram invites an exploration of ancillary
impacts on forest wildlife (which respond strongly to forest structure) as well as possible impacts on
water yield mediated by changes in transpiration

%i Habitat diversity
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8.5.3 Reality Check

Structured decision-making can be a complicated process, compared to an autho-
rized agent making a decision on behalf of (presumed) stakeholders. This complex-
ity is warranted in a rather small fraction of actual decisions. Hemming et al. (2022)
provided a schematic breakdown of cases: They suggested that, out of a hypothetical
pool of 10,000 decisions, fully 90% are either inconsequential or so easy (‘“no-
brainers”) that a complicated decision process is not worth the effort. In many cases
(10%) that do require more effort, the added clarity that comes from ‘“thinking
through” the options might suffice. In a few cases (2.5%?), at least a partial decision
analysis is warranted; these might entail devising an objectives hierarchy and a
means-ends diagram to marshal the process along and to attend complexities due to
uncertainty about objectives or alternatives. In a very few instances (<1%?7), a full
decision analysis might be required; these few cases might be driven as much by
stakeholder interest and politics as by the complicated details of the decision
alternatives themselves. In every case, a sensitivity to the process of structured
decision-making can provide the guidance that will help decide how we should
decide any given case.

Decisions are often based on models with uneven empirical support. As part of
the decision process, weighing the evidence supporting means-ends models is a
crucial element of the decision process. Tallis et al. (2017), Olander et al. (2018), and
Qiu et al. (2018) provide general guidance relative to means-ends models applied to
ecosystem services. Mason et al. (2018) illustrate an approach for a general model
for services provided by salt marshes: how the general model can be adapted locally,
with an evidence library supporting various details of the general model.

8.6 Further Reading

This chapter has focused on site prioritization as a fundamental task in conservation
at the landscape scale. There are other aspects of conservation, of course, and these
are addressed in more general texts (e.g., Meffe and Carroll 1994; Pickett et al. 1997,
Hunter and Gibbs 2007; Primack 2012) and at least one with the perspective of
landscape ecology (Gutzwiller 2002).

Conservation priorities depend on the particular context of any given landscape.
In general, for the common case of forests in a human-modified landscape, the
priorities are to increase the absolute amount of habitat, to improve its condition or
habitat quality, to increase its connectivity, and to reduce the contrast between
habitat and the nonforest matrix. Arroyo-Rodriguez et al. (2020) provide a review
and useful synthesis of the ecological concepts that underpin planning in human-
modified landscapes managed for conservation as well as ecosystem services.



8.7 Summary and Prospectus 245

Decision analysis is a well-developed practice and there are several general
references (e.g., Hammond et al. 1999; Clemen 2001; Gregory et al. 2012). Like-
wise, there are general texts on the economic side of decision-making, including
valuation techniques (e.g., Champ et al. 2003; Freeman et al. 2014) and benefit-cost
analysis (e.g., Boardman et al. 2006; Hanley and Barbier 2009). The US National
Research Council (NRC 2005) and Ninan (2014) specifically address the valuation
of ecosystem services.

Esmail and Geneletti (2018) reviewed 20 years of environmental applications of
MCDA and offer recommendations to improve the practice. Johnston et al. (2015)
and Hemming et al. (2022) provide helpful introductions to structured decision-
making specifically for conservation practitioners.

8.7 Summary and Prospectus

Site prioritization can emerge from a simple ranking of candidate sites based on
species diversity or some other index of relative value. But, often, prioritization
invokes multiple objectives, objectives that might be subject to leveraged co-benefits
or forced trade-offs. Multi-criteria decision frameworks can help generate and
communicate these decision contexts. At this level, decisions are often framed in
ecological or biophysical terms, and decisions can be made by invoking a user-
specified system of weights across the multiple criteria.

In many cases, heterogeneous stakeholder groups will have different preferences
for the alternatives, and these preferences can be incorporated into a structured
decision-making process by considering relative preferences for the ecological out-
comes suggested by the alternative management or policy options.

Clarifying the decision alternatives in terms of an objectives hierarchy and a
means-ends diagram that links options to outcomes can be useful because these can
be communicated readily to stakeholders. The level of rigor, objectivity, transpar-
ency, and inclusion of stakeholders all contribute to better decisions.

It is becoming increasingly easy to implement decision support tools using
geospatial indicators in a GIS. This can greatly facilitate site prioritization. But it
also can lead to a static ranking of sites if the process is not updated to reflect a
changing decision context—e.g., which sites have been protected, how connectivity
might have changed, increasing threats from development, climate change, a grow-
ing interest in environmental equity, and so on. Structured decision-making is only
useful if it is updated and revisited over time.

Systematic conservation planning is a well-established practice now, but it is still
evolving. For example, there are emerging approaches for incorporating connectiv-
ity into conservation planning (Daigle et al. 2019; Hanson et al. 2021). And
increasingly, practitioners are addressing climate change directly in conservation
plans (e.g., Reside et al. 2018; Eaton et al. 2019; reviewed by Urban 2023,
Chap. 10).
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These applications can get increasingly complicated, and again the value of
systematic approach and structured decision-making is its rigor, transparency, and
inclusivity. We return to the assessment and communication of (sometimes compli-
cated) change scenarios in the final chapter of this book.
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Chapter 9 )
Landscape Change Shex

Abstract Perhaps the most fundamental observations of landscapes are changes in
land cover or condition over time. The initial task, given such observations, is to
determine whether the observed changes are real—an issue of extracting an ecolog-
ical signal from the background noise. In this chapter we begin with trend detection
and then proceed to capture trends in simple models that can be extrapolated into the
future. Simple models are often too simple to be satisfyingly realistic, but they
provide a useful point of departure for models that are too realistic to be simple.
Considering a variety of simple and less simple models of landscape change leads to
a more general consideration of the modeling process (and our role in this). While
appreciating that most practitioners will not aspire to be modelers, most landscape-
scale applications involve models of some kind. This chapter aims to instill an
appreciation of the modeling process and workflow and the role of models in
landscape ecology and management.

9.1 Introduction

Perhaps the most basic observation of landscapes, or natural systems in general, is
that they change over time. This is despite a natural inclination to think of landscapes
as being “slow” and nearly static over timescales corresponding to human lifespans
(or the careers of landscape ecologists?) (Sprugel 1991). As they say, the only
constant is change.

Observing change over time invites several reactions. The first is confirmatory: is
the change we think we are seeing actually real? Change detection is the first hurdle
in exploring landscape change. This is largely a matter of detecting a significant
signal, given the background noise in any ecological data series. We begin this
chapter with a consideration of change detection as a signal-noise problem. This is
the essence of a monitoring program. Given an observed change, the question arises
whether the change is substantial enough to warrant a management response, or even
a reassessment of our expectations of the system: the “react” stage of adaptive
management. We finish this book with ecological assessment, in Chap. 10.
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A natural response to trends observed through monitoring is to extrapolate these
trends into the future, a forecast. A forecast is a model, and models of landscape
change are the main focus of this chapter.

On landscapes, a common signal of interest is the change in a focal land cover
type (e.g., forests, or developed land covers). While such interests are easily moti-
vated, they are complicated by the reality that land cover change is a zero-sum game:
if something is increasing, then something else must be decreasing at the same time.
So it makes sense to consider land cover change in terms of simultaneous changes in
all types over times. An empirical summary of such joint changes is perhaps the
simplest model of landscape change. Our first entry into models of landscape change
will be with such models: models that are simple and sometimes perhaps too simple
to be realistic (not that unrealistic models cannot be useful!).

A perhaps inevitable response to simple models is to try to improve them, to
address perceived inadequacies. This leads to what we will term extended models of
landscape change, which often are models that are too realistic to be simple.

The evolution of models from “too simple to be realistic” to “too realistic to be
simple” invites a more general discussion of modeling and (perhaps unavoidably) of
modelers. We close this chapter with a pragmatic discussion of modelers and
modeling, with the aim of cultivating an appreciation of the modeling process—
especially for landscape ecologists who are not personally very interested in model-
ing. Even those who are not particularly invested in models will encounter them
regularly in their work, and so a cautious appreciation of models and modeling is a
useful professional skill to develop.

9.2 Models in Landscape Ecology

Landscape ecology as a discipline has always been heavily invested in models of
various kinds (Risser et al. 1984; Urban 2023). It will be useful to begin this chapter
with some foundational issues in modeling, before delving into actual practice. We
will return to some general issues after considering a few examples.

9.2.1 Why Use Models?

Ecologists use very many kinds of models (Zurrell et al. 2022), and so no simple list
of reasons for modeling can suffice. Models can serve:

* As alogical system for organizing ideas. We all do this, however informally or
unconsciously. One might argue that models of this sort are how we translate
observations into information: observations only take on meaning in the context
of some model.
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* As a framework for comparisons. We might use a model as a way to compare
different ecosystems, or similar ecosystems in different regions. In this, the model
forces us to collect measurements to conform to its structure and parameteriza-
tion, in effect providing the experimental design for the comparison.

* To interpolate or extrapolate in space. We do this routinely when we map the
potential distribution of a focal species or resource using some sort of species
distribution model (Chap. 2). This can be done with nonspatial, implicitly, or
explicitly spatial models (Peters et al. 2004). An implicitly spatial model is one
that is nonspatial in its formulation but provides spatially structured output
because it is driven with spatially structured data as input. Spatial models
explicitly incorporate spatial processes or constraints.

» To explore realistic or hypothetical scenarios. We do this to evaluate alternative
management strategies, or to explore the implications of natural or anthropogenic
changes to systems (e.g., land use change). This is especially important for
landscapes, which are not often amenable to experimental approaches for logis-
tical (large size, difficulty of control) or ethical reasons (e.g., working with rare or
endangered species).

* To explore attribution. For example, could this mechanism be responsible for the
observed state of the system? Attribution is explored via controlled model
experiments using a “all else being equal” design.

» To make specific predictions (forecasts). While this might seem the most straight-
forward and common application of models, it tends to be the least frequent
application in practice. This is largely because the high levels of uncertainty in
most models (especially landscape models) tend to steer modelers away from
specific predictions. (This is why climate modelers present their model runs as
scenarios rather than predictions.) Nonetheless, it is precisely these forecasts—
associated with quantitative estimates of uncertainties—that increasingly are
demanded by managers and policy-makers (Clark et al. 2001).

9.2.2 Stages of Model Development

Regardless of the purpose, models tend to be built in a sequence of logical stages,
beginning with the initial conceptualization and proceeding through successively
more technical steps of actually encoding the model to its ultimate application for
purposes as itemized above. The workflow of model-building might be outlined
loosely as follows (Fig. 9.1).

Conceptualization This is the stage where we realize that we need a model and
decide what the model should do. That is, what question should the model address,
and what would constitute a useful answer to the question? What processes will be
included in the model (and so, what will be left out)? This process often leads to a
“box and arrow” (Forrester) diagram of the model, which depicts its components and
how these interact (recall prototype structural equation models in Chap. 7 and
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Fig. 9.1 Workflow for
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means-ends models in Chap. 8). To the extent that this conceptual model represents
our best understanding of the system of interest, this also might constitute the “plan”
stage of the adaptive management process.

It is at this stage that the aphorism “All models are wrong but some are useful”
(Box 1976) comes into play. A model designed for any given application will
unavoidably be inappropriate (or worse) for other applications. It is crucial to be
explicit about what the model is intended to do, as these decisions will also affect
what it will not do.

Formalization How will the key processes be represented in the model? What are
the state variables? What equations will represent these (are they linear or
nonlinear)? What other relationships or interactions will need to be specified?

This is where the code gets written and the equations get translated from the
language of statistics or mathematics into a computer language (C++, Java, R,
Python?). In principle, choices made at this stage do not affect the behavior of the
model, though they might influence its ease of use.

Parameterization This is the stage in which actual numbers get assigned to the
equations that formalize the model. That is, while the formalism might be expressed
in terms of named coefficients:

P(y)=bo +bixi +byxs +... +¢ (9.1)

here we need to specify what values the b’s take on. In practice, the form of the
equation and its coefficients are often fit simultaneously, in that the data will not fit
the equation if the equation is inappropriate. Still, it is a good policy to implement the
model in general terms (i.e., code it in terms of named coefficients and parameters)
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and then to provide the numerical estimates of the parameters separately. This
separation also will make it easier to interpret the performance of the model (see
below).

The previous steps result in a working model, one that can be used. The next few
steps actually use the model:

Verification Model verification is the first of two model tests. Strictly, verification
demonstrates the model does what it was intended to do, using the data used to build
the model. Goodness-of-fit statistics in regressions are a familiar example of model
verification (the regression explanatory power, R”, is one summary of this).

Note that this is not a strictly independent test of the model, as the same data used
to fit the model are also used to test it. Thus, verification is a necessary but not
sufficient test of the model.

Validation Model validation is a test using data that were not used to build the
model and in this sense represents an independent test of the model. The further
removed from the model construction the test is, the more demanding. For example,
we might build a forest simulation model for the Southern Appalachians in the
southeastern USA and test it with data from elsewhere in the Appalachians. A
successful test would build some confidence in the model. But a successful test of
the model using data from New England or the Pacific Northwest, or Sweden, would
be a more demanding and thus more satisfying test of the model. We considered
some approaches for model validation when we explored species distribution models
(Chap. 2).

Analysis Often, it is appropriate to do some systematic analysis of the model, to
gain insight into its behavior: Why does it do what it does? One of the compelling
reasons for developing models is that the model itself often can offer general insights
as a consequence of its (simple) formalization. We turn to this in more depth in
Sect. 9.5.

Applications Once a model is validated, it is ready for the applications it was
designed to support. These include many types of formal analyses (above) but also
include extrapolations in space or time, the exploration of alternative scenarios, and
so on. Again, we return to some examples in Sect. 9.5.

Clearly, model validation is an ongoing process: as the model is pushed further in
applications, the successful applications (which are also validations) help to define
its domain of applicability, the realm of applications within which it provides
trustworthy behavior. We will pick up this theme of model evaluation after working
through some examples.

Even before we explore some examples of landscape models, the stages of
development (above) suggest guidelines for reporting and communication because
the reporting will recapitulate the stages of model development. We return to
reporting in Sect. 9.5.3.



256 9 Landscape Change

On Models and Modelers (Reassurance)

At this point, some reassurance is perhaps warranted. Most landscape ecologists and
managers will not ever become full-time modelers. But many will work with models
on occasion (as we have suggested in previous chapters!). And essentially all of us
encounter models as consumers of information: models developed by others and
used to inform policy or practice. Examples include regressions of many kinds,
species distribution models (Chap. 2), path diagrams or causal chains used to
develop or motivate management alternatives (Chaps. 7 and 8), and information
conveyed in public discussions of issues such as land use planning and climate
change.

Our dive into models is intended as a tutorial on how models work and some
guidance for their application. An appreciation for these concepts should help end
users be more informed and confident consumers of models. This is the real aim of
this chapter.

In the next section, we consider data on landscape change such as that collected
during landscape monitoring. These sorts of data invite their own interpretation, but
they also serve as a foundation for developing more formal models of landscape
change.

9.3 Monitoring and Trend Detection

Monitoring data are generated by repeating a sampling program, either from inven-
tory or a more targeted purpose (Chap. 1). The result is a set of the same variables as
observed at the same places over time—a stack of data sets.

Monitoring is essentially a task of signal detection: is there a trend that can be
identified and extracted from the background noise? We should all be so lucky as to
work with monitoring data like the iconic CO, time series from Mauna Loa (Keeling
et al. 1976; data now curated at https://gml.noaa.gov/ccgg/trends). In this data set,
the trend is so noise-free that the trend is evident on casual inspection; even the
increasing amplitude of seasonal variation is readily apparent. But most monitoring
data are not so idyllic!

On landscapes, we often work with trends in land cover, land use, or land
condition (Homer et al. 2004; Fletcher and Fortin 2018). None of these is as simple
and straightforward as carbon dioxide. Land cover change illustrates the issue nicely.

9.3.1 Monitoring Land Cover Change

A common observation of landscapes is that their composition and configuration
changes over time. Perhaps this reflects that reality that landscape ecologists actually
live in landscapes, and so cannot avoid noticing change. One such change, in most
parts of the world, is a trend toward more development and urbanization. It is hard to
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deny this trend, but the trend itself provides a compelling (if sobering) entry into the
empirical reality of landscape change.

It is instructive to unpack the trend of “increasing development” into its compo-
nent parts. First, the perceived trend is a concept, and to document the trend requires
data. Data on land use and land cover are not the same: land cover is superficial
(what is actually seen on the ground?), while land use is about practices on the
ground (is the farmland plowed?). For landscapes, these are typically subsumed into
a classified map of land use/land cover (LULC), based on satellite imagery. To
document a trend, we would require such classified imagery over time.

Several realities complicate this seemingly simple demand. First, satellite imag-
ery has not been readily available everywhere over a long time period (much as
current availability might suggest otherwise), and so data on historical LULC are
sometimes hard to find. Second, LULC classification tools have themselves evolved
over time, so that early maps might have been generated using different tools than
later maps. This is good, in terms of the classification models getting better over
time; but it means that the older classifications cannot be compared directly to newer
data products.

Trends in land cover in the Triangle region of the North Carolina Piedmont
(USA) illustrate many of the issues in monitoring landscape change. This region
has experienced explosive development since the 1970s, a time span neatly covered
by the Landsat satellite mission. Sexton et al. (2013) used a multi-year time series of
Landsat images to calibrate a LULC classification to the 2001 National Land Cover
Dataset (NLCD) map product (Homer et al. 2004). Sexton et al. then extrapolated the
2001 classification backward (to 1985) and forward (to 2005) in time.

The classification was complicated by the availability of cloud-free images, minor
geographic errors of registration (which blur otherwise clear distinctions on the
ground), interannual variability in image brightness, and seasonal variability in
spectral signatures (which, for example, separate agricultural land uses from simi-
larly “bright” developed land covers). In sum, the extension of the classification in
time retained an overall classification success that was equal to or better than the
NLCD itself. . .and yet these small complications accrue to complicate the detection
of a widely appreciated trend (Fig. 9.2).

Medium-density development shows a strong trend over time. A trend such as
this naturally invites a more formal set of questions about its statistical robustness: Is
it significant? (Here, P < 0.0001.) How much of the variance does it explain?
(Adjusted R” is 0.86.) Is the trend linear, or is it increasing or decreasing
over time? (Here, the data will not support a nonlinear model.)

It might be emphasized here that other land cover types do not show statistically
significant trends over the same time period—even though such trends (e.g., an
increase in development, a loss of forest cover types) are widely assumed to be
occurring. In the case of high-density development, this might be because this class
is an end-member and additional development might well be occurring in sites that
are already classified as high-density. Low-density development is actually a mix of
land covers (lawns, buildings, roads, shade trees, etc.), and slight variations in the
spatial registration over time might result in a given low-density pixel being
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Fig. 9.2 Trend in three density classes of developed land cover in the Triangle region of the NC
Piedmont (Sexton et al. 2013). The trends are confounded by various sources of uncertainty and
noise; the dashed lines are not significant as linear trends (P > 0.10), while the solid line is
(P < 0.0001)

classified as many other cover classes in any given year; that is, this is a very noisy
class with an intrinsically high error rate (Sexton et al. 2013). All of which is to say,
actual land cover change data can be substantially more complicated than our
expectations.

A second consequence of an observed trend in one land cover type is the follow-
on question of associated changes in other land covers. If medium-density develop-
ment is increasing, then something else must be decreasing. And so it makes sense to
consider LULC change as a zero-sum game and to model changes of all types
simultaneously.

9.4 Models of Landscape Change

In this section, we first develop a simple model of landscape change, framed in terms
of the relative proportions of various land cover types. Such models are often
dismissed as being too simple to be realistic, and yet their very simplicity is often
what makes them useful and interpretable. In the following section, we extend this
simple model to address more realistic issues on landscape change. . .with the result
being models that are too realistic to be simple and can be difficult to interpret or
communicate to others.
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9.4.1 Simple Models

An intuitive model of land cover change can be generated by capturing the rates of
transitions among land cover classes or states over time. These might be land cover
and land use classes, or successional stages, or any other discrete types.

Model Development

The minimum requisite data comprise tallies of the number of samples occupied by
each cover type, for two time periods. A cross-tabulation of these tallies generates a
change or transition matrix, a tally of all incidences in which a sample location
changed from one type to another during that time period (lack of change is tallied as
well, as the diagonal of the change matrix).

This tally matrix T is of simple counts and so reflects sample sizes. The sample
might be random points within the study area or, in this age of geospatial remotely
sensed data, might be an exhaustive tally over the study area (Table 9.1).

To adjust for sample size, the elements of the tally matrix can be divided by the
row totals, which converts the tallies into proportions. These proportions can also be
interpreted as likelihoods or rates, the chances that a location in state i at the first
measurement would be in state j at the next measurement. These rates are in time
steps of the measurement data, reflecting whatever time has elapsed between mea-
surements. While the transition rates can be evaluated at this time step, it is often
convenient to convert them to annual or other regular intervals (e.g., decadal). This
assumes that the transitions during that interval were more or less regular (or can be
treated as if they were). The result of this normalization is a new matrix of transition
probabilities or rates, a transition matrix P.

The transition rates imply a graphical model of the system, in which each
transition describes the likelihood or rate of observed transitions (Fig. 9.3). In
principle, any pairwise transition might occur; but in reality only some of these are
observed and it is the pattern of these transitions that imply the dynamics of the
system. For example, in a succession model where the states are seral stages, flow
tends to be forward, in steps from one type to the next but without stages changing
“backward” except for disturbances or natural mortality events. Likewise, transitions
cannot “skip” stages. In such a system, there are nonzero rates just above the
diagonal and in the first column, while the rest of the transitions do not occur.
Similarly, in models of land use or land cover change, some transitions are much
more common than others, and some transitions—once they occur—are essentially
permanent.

Table 9.1 An example of a tally matrix of observed transitions among discrete states, from each
state (rows) to each other state (columns)

From/to state 1 2 3

1 Ti T T
2 Ty Tas Tos
3 Ts: T3z Ts3
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X1 X2 X3

Fig. 9.3 A flow diagram (or Forrester diagram) of a system of three states and observed transitions
among them. This example suggests a successional dynamic with overall flow to the right, with
some recycling (via morality or disturbance) backward

The transition matrix is actually a complete and accurate summary—an empirical
model—of the observed transitions observed over time. To use the model, we will
require some additional information. A tally of the proportions of the samples that
were in each cover type at each time completes the data requirements.

One simple model of landscape change invokes the transition matrix as applied to
the observed tallies of the proportions of the landscape in each cover type:

X1 =x.P (9.2)

where x is a vector of the cover types (in proportions) and P is the transition
probability matrix. This is a first-order Markov chain, or Markov model (Usher
1992; Urban and Wallin 2002).

A Markov model can be projected forward in time, to predict the state of the
system after an interval of k time steps:

Xk = x, P (9.3)

In the limit, this system likely will equilibrate so that further iterations of the
transition matrix yield the same vector of states. This equilibrium distribution of
states can be calculated from the transition matrix, but in practice it is often
approximated by projections of the model, that is, by simulation (and see below).

Assumptions of a Markov Model
As a simple model, a Markov makes simplifying assumptions. In this case, there are
three main assumptions that matter:

1. The state of the system in the next time step (time ¢ + /) depends only on the
current state (time ¢). That is, earlier states do not influence the transitions; there is
no system memory.

2. The transitions depend only on the state of the system at the observed location.
That is, for a given sample, we only need to know about the state of that sample—
and, in particular, not about the state of its neighbors. There are no neighborhood
or spatial effects.
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3. The observed transitions themselves are stationary; they do not change over time.
That is, it is legitimate to extrapolate them forward in time.

In practice, for a landscape-scale model, it would be difficult to meet these
assumptions; indeed, violations of these assumptions are precisely what we find
interesting about landscapes! Such violations do not invalidate the model, but they
do mean that we need to be careful and transparent about how we interpret model
behavior.

One of the reasons we like simple models, of course, is that they are simple.
When they fail, they fail simply and transparently. In particular, demonstrating such
failures is one of the compelling applications of simple models: we can learn a lot by
observing how models fail (and see below).

Model Evaluation

Model evaluation is a fuzzy concept because what we evaluate depends on the
model, and what is interesting to evaluate depends on why the model was developed.
In general, however, there are a few things of interest.

A first step in evaluation is to ask “Did the model do what we expected or
designed it to do?”. In the case of a Markov model, we expect it to reproduce the
observed pattern of transitions. This is a model verification, a test of the model with
the data used to parameterize it. This is not an independent test, and a successful
verification is necessary but not sufficient to build our confidence in the model. For a
simple Markov model, the verification must work: the model is purely empirical, and
if it does not reproduce the observed transitions, it can only be due to “operator
error” (miscalculations or coding mistakes) along with (perhaps) some minor
rounding error.

Beyond verification, validation is a test of the model using data that were not used
in developing it. This is an independent test, and if the model validates successfully,
it helps bolster our confidence to use it in further applications. (We return to model
validation later in this chapter.)

One thing we would like to know of a model such as the Markov example is
“What are the longer-term implications of the transitions observed over the
short term?” For example, if we build a model based on a decade or so of observed
transitions, what do these imply over several more decades? In the case of the
Markov model, the answer is provided by projecting the model (analytically or by
simulation) to see if and when it reaches a steady state. In particular, the steady-state
distribution of cover types is the main result of the model.

There are other aspects of model evaluation. But we will defer these until after we
have looked at some example applications.

Examples

In this section we consider, superficially, a few examples of simple (Markov) models
of landscape change. The aim here is to illustrate the range of insights that can be
garnered from simple models.

Forest Harvest Rates in the PNW Urban and Wallin (2002) developed a simple
Markov model to explore forest change in the Pacific Northwest of the USA. This
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Fig. 9.4 Forest dynamics under transition rates estimated from a small sample of points in the
Western Cascades, Oregon, USA (Urban and Wallin 2002). The projection clearly suggests a
substantial reduction in old growth over time

was during a time when the amount and fate of old-growth forest was a contentious
issue (Ruggerio et al. 1991; FEMAT 1993; USDA/USDI 1994; Marcot and Thomas
1997). One of the confounding issues was that it was not clear how much old growth
existed, and the main question was whether forest harvest rates in place at the time
were sustainable longer term. The first issue was resolved in part by novel (at the
time) analyses of remotely sensed imagery, which allowed an objective estimate of
the amount of old growth relative to other age classes of forests (Cohen et al. 1995).
The exercise' was designed to explore the longer-term consequences of forest
transitions observed during the late 1970s into the early 1990s.

The model was constructed from a small sample (n = 200) of points extracted
from satellite images classified to forest age classes. Forward transitions between age
classes then represent succession, while reversions to earlier ages represent distur-
bances (including timber harvest) or natural mortality.

Extrapolation of the model over time showed another clear implication: the
harvest rates over this time period would lead to a dramatic loss of old-growth
forests over timescales relevant to regional forest planning (Fig. 9.4).

Two results of this exercise are pertinent here. First, the model verified correctly
but failed to validate using data beyond the period used to parameterize the model
(1991 versus 1972—-1984). This failure clearly demonstrates that the assumption of
stationarity was violated; indeed, harvest rates increased over this time period
(Fig. 9.5).

"1t should be emphasized here that this application was designed as a teaching exercise. The sample
size was quite small (the original exercise was done by hand), and results are thus a bit noisy and not
very precise—though the essential results are probably robust.



9.4 Models of Landscape Change 263

0.5 7 @ clear young ® mature
° mid-seral @ old-growth
0.4  \
[ ]
[ ]
S 03+
t
]
s o //
& 0.2 H °
[ ]
0.1
0.0
T T T T T T
1970 1975 1980 1985 1990 1995

Year

Fig. 9.5 Validation of a simple Markov model of forest clearing for the Pacific Northwest of the
USA (Urban and Wallin 2002). Here, the “misses” for age classes in 1991 compared to the years
used in model parameterization (1972-1984) show that the transition rates changed over time:
harvest rates increased

These simple results are worth noting because similar results (using more robust
data sets) were instrumental in changing forest management policy in this region.
The models were simple and their simplicity was a benefit in this application.

Succession in Managed Versus Natural Forests Hall et al. (1991) classified
satellite imagery into forest cover types for two regions in the Upper Midwest of
the USA: a wilderness area and an adjacent area subject to forest management. They
generated Markov transition matrices for both study areas over a 10-year interval.
Their study is a nice illustration of the interpretative value of simple models.

They compared transition matrices for the two regions and found that the
ecological transition rates (i.e., the upper off-diagonal that captures succession)
were similar for the two regions, while the lower off-diagonals (disturbances) were
different; these differences were obvious on inspection. They found that roughly half
of the observations (pixels in the imagery) changed state over the 10 years, while
both regions were near the steady state implied by their transition matrices. Again,
much of this insight is available from inspection of the transition matrices.

This study also illustrates some of the analytic insights available from the Markov
model. This began with the expected steady-state distribution of cover types (i.e., as
analytic result rather than via simulation). Their analyses also included estimates of
the time a sample would be expected to remain in its current state (holding time) and
the time it would take for a sample to leave that state and cycle through other states
back to the initial state (cycle time). Only simple models offer this tractability.
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Watt’s Unit Pattern Watt (1947) provided a timeless and profound conceptual
model for plant ecology in his notion of the unit pattern. In this, he posited that the
observed distribution of abundances of plant community types (successional stages)
reflected the duration of those types over time. This “pattern-process paradigm’ has
been a foundation of community ecology ever since, and it provides the logical basis
for “space-for-time substitution” as a means of studying plant community dynamics
such as succession by observing the distribution of seral states at any given time.

Urban (2023, Chapter 2) used field survey data from Watt’s earlier studies to
generate a simple model of succession for British beechwoods. One notable point in
terms of model construction was using the duration of successional stages to
estimate transition times between stages. Although not formalized during Watt’s
career, the approach is relatively generic: If the duration of a stage is 7 in time (e.g.,
years), then the transition rate of that type to the next in succession can be roughly
estimated as t = 1/T. This simple approximation generated a Markov model of
beechwoods dynamics.

Two takeaway messages come from this model. First, the steady-state distribution
of successional stages is Watt’s unit pattern: the “community in harmony with itself”
(Watt 1947:19). This is a space-for-time substitution, translating the abundances of
types observed on the ground in a synoptic survey into the temporal dynamics of
succession.

Second, Watt presented his conceptual model of the steady state, in part, to
underscore how difficult it might be to observe this in nature. Especially, chance
events such as disturbances would propagate anomalies into the distribution of seral
stages, which anomalies might persist for many decades or even centuries.

Simulations of a simple model based on Watt’s data illustrate both points
(Fig. 9.6). First, the steady-state distribution of seral stages depends only on the
transition rates inferred from the durations of those stages; the model converges on
the same distribution no matter what the starting conditions. Second, an arbitrary
perturbation of the system (mimicking a large disturbance) injects a transient wave
of readjustment that might last for a century or more. Thus, Watt’s simple model
introduces a conceptual foundation for space-for-time substitution while also warn-
ing us that it might be really difficult to apply this model to real systems.

Succession in the NC Piedmont A similar application in succession modeling can
be developed for the Piedmont of North Carolina, USA. This example focuses on an
iconic depiction of forest succession (Fig. 9.7), from Odum (1953) and Johnston and
Odum (1956). The succession diagram, in turn, was based largely on detailed
descriptions of plant communities of various successional ages by Oosting (1942).
Many of these field surveys were on sites now maintained as part of the Duke Forest.

This approach uses a chronosequence (a collection of sites of varying ages) to
make inferences about succession, a common method of space-for-time substitution.

As with Watt’s beechwoods, a simple Markov model can be generated based on
reported duration and transition times for the community types. Oosting’s (1942)
studies emphasized early-succession types, especially old fields from abandoned
agriculture (these are floristically quite interesting, if short-lived). The transition



9.4 Models of Landscape Change 265

0.7 q ® Bare
Gap
0.6 ® Rubus
Oxalis
0.5 1
§ 04
t
2
8 0.3 A
o
0.2 1
0.1 4
0.0 1
T T T T T 1
0 50 100 150 200 250
Year

Fig. 9.6 Projection of a simple Markov model of succession in British beechwoods (after Watt
(1947)). The forests are dominated by beech (Fagus) and the stages are defined in terms of the
understory; the sequence is gap (created by the death of a canopy-dominant tree), bare (very dense
shade), Oxalis, and then Rubus. The steady state was perturbed by an arbitrary disturbance in year
100, with the resulting transient persisting for another 100+ years. (Reproduced from Urban (2023),
permission conveyed via Copyright Clearance Center, Inc.)
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Fig. 9.7 Schematic of secondary succession in the Piedmont of North Carolina, based largely on
observations of the Duke Forest (redrawn from Odum (1953), Johnston and Odum (1956); After
Oosting (1942)). Oosting’s work summarized plant communities in terms of their successional ages,
including the duration of those stages. (Permission conveyed via Copyright Clearance Center, Inc.)

rates are only approximate, as the authors reported ranges of values for the durations
of seral stages.

The Duke Forest model generates a successional sequence consistent with that
depicted in Fig. 9.7 (Fig. 9.8). This should not be surprising: the model should do
this, by definition. The simulation shows a rapid turnover of old fields and shrub
types and a later transition from pine to oak-hickory forests. The oak-hickory forest
begins to assert its dominance after about 100 years, as the hardwood understory
emerges through the senescent pines.

This example is introduced here because it is an iconic model of forest
succession. . .and a model we will revisit in the next chapter.
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Fig. 9.8 Secondary succession in forests of the North Carolina Piedmont, as projected using a first-
order Markov model estimated from the transition times shown in Fig. 9.7

9.4.2 Extended Models of Landscape Change

The models illustrated in the previous section are appealing in their simplicity, but
this simplicity can sometimes detract from their broader acceptance. For example,
the dynamics from such models can be a bit foo clean and smooth, and it is easy to
show that some of the basic assumptions are often not met by real systems. There are
model extensions or modifications that can address these limitations.

More realistic temporal dynamics can be implemented by using a semi-
Markovian approach that allows time lags before transitions and distributes the
transitions over time (e.g., Acevedo et al. 1995, 2001). Nonstationary transitions
can be addressed by computing a sequence of different transition matrices over time
(i.e., updating the rates) or by modeling the transition rates to be explicitly functions
of time. If history matters, a higher-order Markov model might be used, in which the
transition likelihoods depend not only on the current state but also on previous states.
Foster (1992) has shown just how pervasive and important such historical legacies
can be. Finally, spatial influences can be incorporated, as contagion effects (e.g.,
patchy disturbances or development patterns) or as gradient effects (e.g., processes
that depend on topographic position).

The trade-off in such model extensions is that the models are more realistic but no
longer as readily tractable. Here we consider some examples of extended models, to
illustrate the types of models that result from such improvements. We then turn to the
issue of how to evaluate models that are too realistic to be simple.

Agent-Based Models
We can develop a popular approach to land use change modeling by returning to the
species distribution models (SDMs) we explored in Chap. 2. If we envision
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development as the expansion of “human habitat,” then an SDM such as a logistic
regression can be fitted to describe human habitat affinities. The data required are
two sets of samples: (1) sites that have been observed to be developed over a given
time interval (known positives, or presences in SDM terms) and (2) a second set of
samples that represent either (2a) locations that were observed to not be developed
(known negatives or absences, in SDM terms) or (2b) a set of samples representing
locations that might have been developed (pseudo-absences, in an SDM). Typically
the pseudo-absences would be a set of random points over the study area but
excluding sites that could not possibly be developed for logistical or political
reasons. (Recall Chap. 2, Sect. 2.2.3, for the logic behind these data choices.)

Set up this way, the model is fitted exactly as with other SDMs. In application, a
logistic regression is a popular choice, with the predictor variables selected to
capture elements that might distinguish human preferences (e.g., distances to work
or shopping centers or other amenities) as well as logistical variables (such as
proximity to existing infrastructure, topography). In social-science applications,
these models are often termed hedonic models, in that they model human preferences
(e.g., Geohegan et al. 1997; Irwin and Geoghegan 2001; Veldkamp and Lambin
2001).

We now can extend this starting model. To extend a hedonic model for a
landscape, the model can be embedded in another model. In the extended model,
virtual “developers” or homebuyers, termed agents, are presented with a sample of
available sites. Each site’s suitability is evaluated using the hedonic model. The
virtual agent then chooses an appropriate site (e.g., with the highest suitability or
hedonic value) and that location is developed. This process is repeated for a very
large number of agents. The development process must be constrained to a
target allocation (e.g., based on observed development rates or how much develop-
ment is expected in the future); the model suggests where that development might
occur.

An agent-based model can be extended further by including different types of
agents: individual homebuyers (perhaps with various preferences represented by
different hedonic models), commercial developers, and so on. This constitutes a
multi-agent system (Parker et al. 2003).

Agent-based models and multi-agent systems have been a popular choice in
simulating land use and land cover change (Verburg et al. 2006; NRC 2014). The
challenge, of course, is in estimating the hedonic models. Empirical estimates are
typically based on surveys administered to local or regional populations. These can
be very data-hungry models.

Hybrid Models

Modeling land cover change is intriguing but challenging, in ways that capture most
of the compelling issues in modeling landscape change. While multi-agent systems
might nicely capture the kinds of sites that are developed, and the expected amount
of development, they are not designed to simulate the spatial pattern of develop-
ment. To capture the spatial signature of land use change, other models are used.
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One common way to capture the contagious nature of development is to use a
cellular automaton. An automaton is a cell-based model in which transition rules
depend on the state of the cell (pixel) and the state of the cell’s neighbors (e.g., its
four or eight neighbors). In land use change modeling, an automaton might be used
to force development to be a contagious process that spreads through
neighborhoods.

An automaton still needs to be informed by the suitability of sites for develop-
ment, and so these models tend to be hybrids that use multiple components. Pickard
et al. (2017) reviewed several such models, comparing their performance when
implemented for the same study area and input data sets. They considered four
models, which nicely illustrate the variety of approaches to this common task.
Summaries here are taken largely from Pickard et al. (2017).

GEOMOD This model (Hall et al. 1995) includes a cellular automaton and a site
suitability component and requires a user-specified target allocation (amount of
development). Optionally, development can be stratified geographically (e.g., by
county or other internal region), and also optionally, development can be constrained
to occur only at the edges of developing regions.

SLEUTH SLEUTH (Slope, Land cover, Exclusion, Urbanization, Hillshade)
(Clark et al. 1997; Jantz et al. 2010; Chaudhuri and Clarke 2013) includes a cellular
automaton and a set of transition rules that control spontaneous development, new
centers of spreading development, growth at developed edges, and development
influenced by roads. Transitions are constrained by elevation and topography (which
are primary constraints on road-building).

LCM The Land Change Model (Lein 2003) works from three drivers: (1) a
target allocation (amount of change), (2) transition potential based on site suitability
(e.g., via an SDM tool), and (3) change predictions based on an internally calibrated
Markov model of “from” and “to” (developed) land cover types.

FUTURES The FUTure Urban-Regional Environment Simulator (Meentemeyer
et al. 2013) consists of three linked modules. A demand module estimates a target
amount of development based on a model that relates historical development
amounts to changes in population. A sife potential module summarizes site suitabil-
ity (e.g., via an SDM tool). A patch-growth algorithm handles the spatial configu-
ration, by using an empirical library of observed spatial patterns (patch sizes and
shapes) of developed land covers. During the simulation, the demand function is
refreshed at each iteration to generate land demand for the next time interval.

Pickard et al. (2017) noted that these models were quite heterogeneous in terms of
their ability to capture (verify) various aspects of land cover change. In principle, a
model of land cover change should be able to predict the amount of development, the
location of new development, the pattern of what other land covers tend to be
developed (i.e., what development comes from), and the configuration of developed
land covers. No existing model can do all of those things perfectly.

In another review, Sohl et al. (2016) compared a different set of land use change
models, in very large-scale applications over the USA. Similar to Pickard et al.’s
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results, they found inconsistent results over the modeled scenarios and no clear
solution to reconciling these.

For our purposes here, these reviews provide two key insights. First, they
underscore the crucial need, at the outset of any modeling application, to be very
clear about the intent of the application. A model’s failure to reproduce any given
aspect of a real system is not a failure if predicting that aspect was not an objective in
the first place.

Second, the sheer complexity of these models invites us to ask “What might one
do with a model this complicated?”. Even quite sophisticated models of develop-
ment often cannot reliably predict actual development (if they could, land use change
modelers would all be real estate investors and wealthy beyond imagination!). So
what can we learn from models that are too realistic to be simple? We turn to this
question in the next section.

9.5 Model Applications

A model that includes processes implemented in realistic detail is unlikely to be
interpretable at a glance; nor is it likely to yield a simple solution that describes
model results (outputs) in terms of inputs.” And yet there is a great deal we can learn
from such models, by analyzing them to discover why they behave the way they
do. In this section we consider some general forms of model analysis that can
provide such insights.

One way we learn from models is to ask the models themselves why they act the
way they do. Formal analyses include sensitivity and uncertainty analysis. In other
cases, we pose model experiments— “What if?” scenarios—to explore model behav-
ior and expectations, which are typically variations on an “all else being equal...”
theme.

9.5.1 Model Sensitivity and Uncertainty

Model sensitivity and uncertainty both refer to how much model output varies in
response to slight variations in model input. In the case of sensitivity, the emphasis is
just that: an input parameter is sensitive if slight variations in that parameter elicit
large variations in model output. A parameter is uncertain if it is sensitive to
variations within our ability to estimate that parameter. Both aspects are readily
estimated through model analysis.

2At a seminar early in my career, I presented a fairly complicated model, a spatially explicit
individual-based bird metapopulation model. In the discussion that followed, someone in the
audience asked “Why would anyone want a model like that?” It’s a fair question.
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Sensitivity Analysis

In a simple model such as a regression, parameter sensitivity is straightforward: A
regression coefficient by definition expresses the incremental change in the depen-
dent variable we expect, given an incremental change in the independent variable.
These can be compared across predictor variables only if the parameters are stan-
dardized (e.g., to z-scores) so that possibly different measurement units can be
reconciled. Given standardized coefficients, parameters with the largest absolute
values are the most sensitive.

But in many models, the effects of an input on an output are not as direct. For
example, in a path model (Chap. 7) with indirect effects, the influence of a given
variable might show up in multiple places in output, or its influence might be
expressed (or even negated) through various intermediary pathways. In simulation
models, it can be unclear how the influence of any given input might propagate
through the system.

In sensitivity analysis, these complications are resolved through a systematic
analysis of the parameters. In the analysis, a large number of simulations are
conducted with the model. In each instance, the value of each input parameter is
varied by an arbitrary amount, say +10% of its nominal (mean) value. These
perturbations of the parameter values can be stochastic (random within the +10%)
or systematic (varied incrementally over that range of values); the choice might
depend on how many parameters the model includes. The outputs from all of these
simulations are then collected, and the outputs are regressed on the inputs. The result
of this analysis—a multiple regression problem—is a summary of the partial explan-
atory power of each input parameter, within the constrained ranges of variation.
Again, by definition, a parameter is sensitive if minor changes in its value elicit large
changes in output.

Sensitivity analysis is a powerful way of summarizing why a model does what
it does: A model responds to its sensitive inputs. This is then also a powerful way to
discover which parts of a model are most important and, by extension, which parts
might warrant further scrutiny or follow-up study.

Uncertainty Analysis

Model uncertainty is related to sensitivity. A sensitive parameter elicits substantial
variation in model output. An uncertain parameter is one that cannot be estimated
with much precision. This becomes an issue with models if an uncertain parameter is
also sensitive: in that case, we cannot really distinguish between valid model output
and output due to errors of estimation.

Uncertainty analysis proceeds essentially like sensitivity analysis. The difference
is that instead of perturbing parameters by a uniform range (e.g., 10% of their
means), the parameters are perturbed by a range of their respective errors of
estimation (e.g., +1 standard error). The rest of the analysis proceeds as with
sensitivity analysis. The result is a set of model outputs and a set of inputs that
represent estimation errors. Parameters that explain a large proportion of variation in
the output are sensitive within their errors of estimation; they cause high uncertainty
in model output.
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Uncertainty analysis is revealing and useful because it tells us which part(s) of the
model could be improved by better empirical estimates of the associated parameters.
A parameter that is uncertain but not sensitive is not really a critical concern. By
contrast, a parameter that is both uncertain and sensitive warrants further attention.
In this way, model analysis can marshal future research to improve the model most
efficiently.

9.5.2 Model-Based Scenarios

Often, a motivation for model construction is to devise a tool that will allow us to ask
“What if?” questions. These might look like model predictions, but they are more
restricted in form. These are forecasting scenarios, and the model predictions are
couched in a set of assumptions embodied in the model itself but also specified
explicitly in the modeled scenario (Clark et al. 2001).

Model-based scenarios come in various forms. But three common applications
include the assessment of management alternatives, retrospective analysis to try to
attribute possible causation, and explicit forecasts of future scenarios. Many such
modeling exercises, if based on geospatial inputs, can be mapped explicitly to
highlight locations that are particularly compelling or interesting for any given
application.

Alternative Management Options

A common application of models is to use them to ask “What if” questions about
alternative management scenarios. These might be management interventions or
policies that drive such interventions. Often, the comparison includes a “do nothing”
alternative to represent the status quo.

We have already considered these applications in Chap. 7, using structural
equation models (Sect. 7.4.1 and Fig. 7.10). We also highlighted alternative man-
agement scenarios using means-ends diagrams (Sect. 8.3.2) as a part of structured
decision-making in Chap. 8 (recall examples in Sect. 8.5).

Shoemaker et al. (2019) used the FUTURES model (Sect. 9.4.2) to explore policy
scenarios to influence land use change in terms of the provision of ecosystem
services under urbanization. They focused on watershed protection (pollution abate-
ment), protecting sensitive habitats, and carbon sequestration. No scenario simulta-
neously improved all three services, suggesting necessary trade-offs in land use
planning (recall Chap. 8 for trade-offs in decision-making).

Miller and Urban used a detailed forest simulator (Miller and Urban 1999a) to
explore fire management alternatives, contrasting prescribed burns and mechanical
fuel reductions (Miller and Urban 2000). They were able to use the model to assess a
range of prescribed fire intensities, finding that it would require burns hotter than
normal practice to achieve the same fuel reductions as mechanical thinning. These
are model-based experiments, which are a logistically feasible way to “preview” on-
the-ground experiments that are more logistically difficult and expensive.
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Historical Effects and Attribution

Models are often used to evaluate possible explanations of observed outcomes, with
the causes typically being in the past and unobserved. This is not really hindcasting
(which would mean running a model backward in time), but rather detective work
aimed at attribution: what might have caused the situation we observe? A substantial
amount of work in landscape ecology is about model-based attribution.

One appealing aspect of structural equation models (Chap. 7) is that they allow us
to explicitly describe alternative paths by which influences can propagate through a
system, either as direct or indirect effects. Fitting the model from data yields
estimates of the relative importance (and sometimes plausibility) of the various
paths, in terms of relative explanatory power and significance levels. The means-
ends models used in structured decision-making would provide similar inferences, if
actually fitted to data (as compared to being used as conceptual or heuristic guides).

We use many types of models in attribution applications. These include, rather
prominently, a long history of studies that aim to infer the relative importance of
various aspects of landscape pattern in shaping ecological responses. The long-
running debate over the relative importance of habitat loss (i.e., habitat area itself)
versus the spatial configuration of that habitat (especially fragmentation itself, or
connectivity) is a telling example of the challenges of model-based attribution when
the competing explanations are correlated (e.g., Fahrig 2003, 2017; see also Urban
2023, Chapter 5).

This same issue of area versus configuration, and confounded influences, is
repeated in analyses of urban streams as affected by watershed pattern: Is it the
total area of impervious surfaces that matter, or how these are arranged and
connected? This is a complicated case—the urban stream syndrome (Walsh et al.
2005)—but one that is yielding to analytic approaches borrowed from terrestrial
applications (recall Sect. 7.4.2 and see Urban 2023, Chapter 9).

Future Scenarios

Model forecasts into the future are typically cast as scenarios rather than precise
predictions. A scenario is a forecast bounded by a stated set of assumptions and with
full disclosure of uncertainties (Clark et al. 2001).

Projecting species distribution models into the future is a familiar example of a
model-based forecast. In this case, it might not be obvious to the reader just how
many assumptions are being made: that habitat suitability as modeled is the main
constraint on species distribution, that dispersal is not limiting, that interactions with
other species are not important, and so on. Again, open communication about the
assumptions underlying the forecast is critical.

Forecasts are especially challenging for systems characterized by substantial
natural variability or processes beyond our control. Land use change models are a
good illustration: While we might understand the main processes that drive land use
change, we cannot really know about future events that could easily change the
trajectory of change. For example, a new (unexpected) development project might
spawn contagious development around it; real estate markets influenced by larger-
scale macroeconomic trends might alter the demand for land; and so on. Such events
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induce path dependencies into processes such as land use change: observed changes
depend on particular events that can change trajectories, and these can be difficult to
anticipate (Brown et al. 2005).

What forecasts like this provide is an appreciation of the kinds of outcomes we
might expect. For example, land use change models might offer insights into the
patterns of development expected from policies favoring infill in urban centers rather
than suburban sprawl. Climate-change models are a familiar example of future
scenarios: they predict changes in storm frequency and intensity, but they do not
predict individual storms.

Mapping Model Outputs

A compelling feature of many models used in landscape ecology is that they are
driven by geospatial data and so their output can be mapped in a geographic
information system (GIS). Through mapping, the user can better understand not
only why the model behaves as it does (through model analyses, above) but also
where it does what it does. This can be enormously informative.

We have already considered one example of mapping model predictions, when
we mapped the output from a species distribution model (Chap. 2, Sect. 2.4.4,
Fig. 2.9). In particular, mapping misclassifications can show, at a glance, cases
that might be ecologically interesting. Such cases might include species occurrences
in locations predicted to be “nonhabitat” (false negatives), but which are occupied
because of a dispersal from nearby source habitats (Pulliam 1988). Similarly,
unoccupied sites predicted to be “habitat” (false positives) might be so because
they are isolated. Both misclassifications, though strictly model failures, are
expected from metapopulation theory and accessible by mapping model predictions.

Model sensitivities and uncertainties also can be mapped, if these analyses are
conducted in terms of geospatial variables. We considered one example in Chap. 1,
in which model sensitivity analysis was used to help guide the design of a climate-
change monitoring program (Chap. 1, Sect. 1.3.4 and Fig. 1.10; Urban 2000).

In regression-based models, model parameters (i.e., fitted coefficients) can be
mapped into geographic space. This can be done using geographically weighted
regressions (Brunsdon et al. 1998; Fotheringham et al. 2002; Dale and Fortin 2014)
or varying coefficient functions in models (Osborne et al. 2007); these are considered
as extensions to species distribution models in Supplement 2S.1.3. If the coefficient
in a regression model varies substantially over the study area, this implies that
relative importance of the variable’s contribution to habitat suitability also changes
spatially. For example, we might expect a regression coefficient representing tem-
perature to vary from north to south over a geographic range of a species. Mapping
model parameters can capture this graphically.

Finally, some model outputs are readily interpretable only if they are mapped.
Models of habitat connectivity are perhaps an obvious example. Some such maps are
rather straightforward to interpret (e.g., the locations of managed corridors), while
others might require some analysis (e.g., using network theory: Urban and Keitt
2001, McRae et al. 2012, Dale and Fortin 2014, Carrea Ayram et al. 2016, Lechner
et al. 2017; and see Urban 2023, Chapter 6). For example, Ashander et al. (2022)
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used network analysis to help design a monitoring program for efficient and early
detection of invasive species spread.

Models and Model Applications

Perhaps most models, once developed, are used for multiple purposes: model
experiments, attribution, and forecasts. Extrapolating a species distribution model
over a large study area and then projecting it under a future climate scenario is one
example.

We have already touched on several applications of a forest simulator developed
by Urban et al. (2000): comparing fire management options (above, Miller and
Urban 2000) and using sensitivity analysis to help guide a climate-change monitor-
ing program (Urban 2000, Chapter 1). The model has also been used to explore
climate-change scenarios, focusing on couplings between climate, forest process,
and fire (Miller and Urban 1999b). These applications used a model that was
developed initially to help synthesize existing data and marshal future research
(Stephenson and Parsons 1993).

Of course, the converse of “one model, many applications” is also true: many
applications rely on multiple models integrated together. Projecting a species distri-
bution model into a future climate couples the SDM to various emissions scenarios,
which scenarios are themselves simulated with one or more climate models. Fore-
casting land use and land cover change usually embeds another model that classifies
land cover from satellite imagery. In all such applications, sensitivities and uncer-
tainties also integrate over the models (termed error propagation), and reporting and
communication must be open and transparent about all of the sources of uncertainty
in the application.

In sum, models have many uses. A key to applications is to be very clear in
communicating how the application was developed and how it should be interpreted.
We turn to this in the following section. We then return to a more general consid-
eration of model applications and how we might learn how to judge which applica-
tions might be appropriate for any given model.

9.5.3 Reporting and Communication

Although models are—by definition—simplifications of reality, models can be
complicated and unwieldy in terms of the details that might need to be communi-
cated to fully explain any given application, especially to a nontechnical audience.

Often, an audience does not need to know all of the minute details that went into
model specification and parameterization (although these details do need to be
available for those who want to learn more). More important are higher-level
motivations about why the model was constructed the way that it was and how its
applications are supported. This naturally leads to a multi-level presentation of the
model: first the conceptual model in broad outlines, then the overall structure and
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logic, and then the details of implementation and parameterization. For many
consumers of models, the first two layers are more critical than the details.

For many modeling applications, this leads to a checklist of what to report, a
scheme that might be nested, perhaps with some details relegated to appendices or
supplements. Information reported here would naturally follow the steps of model-
building (Sect. 9.2). Reporting should include:

What are the specific objectives of the modeling exercise? How did these
objectives guide decisions about what processes or constraints to include and
what to exclude from the model? This high-level explanation is crucial because it
communicates not only what the model will do but also what it will not do.

How was the model implemented? In particular, how was it bounded or restricted
in spatial and temporal scale, to focus on the application at hand? What design
criteria guided these decisions?

How was the model coded? What platform? What programming language? These
decisions should not influence the model’s behavior, but they might have an
impact on how user-friendly the model is or how easy it is to interface the model’s
input and output with other platforms (especially a GIS).

What data were used to parameterize the model, and how was this process
conducted?

How was the model verified? Was it validated? If so, how independent were the
validation data from the original parameterization and verification of the model?

What analyses were conducted with the model? Sensitivity? Uncertainty? Was
there a general solution to the model available via parametric analysis or simu-
lation? Not all of these analyses would apply to all models, but collectively they
confer some appreciation of how the model works, why it does what it does.

Finally, how was the model applied and how were the applications structured to
be as informative as possible? For example, if the model was used to explore
alternative scenarios, the details of these scenarios need to be reported: what was
varied or manipulated, what was held constant, and what else was assumed in the
scenario?

In discussing model results, what assumptions or parameterizations in the model
should temper any interpretation of the results? That is, how should the reader
interpret the results? The modeler will always have deeper insights into model
behavior than a consumer of the model, and the modeler needs to help the reader
understand the application as much as possible.

9.6 On Models and Modelers

The stages of model-building are important to recognize, because they admit varying
levels of model success and failure. In particular, a model might fail (i.e., might not
reproduce behaviors observed in real systems) because it is inappropriate conceptu-
ally, because its formalization is inadequate, or because it is poorly parameterized.
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U @ Universe
® System
S ® Model

Fig. 9.9 Venn diagram representation of model “goodness-of-fit”. (After Mankin et al. (1975)).
The universe of all possible behaviors of the system is U, and S is those behaviors that actually have
been observed of the system. The set of model behaviors, M, intersects S as Q, which is those
observed behaviors that the model has reproduced

In the first case, a conceptual failing suggests a fundamental misunderstanding of the
system. An inadequate formalization suggests that, while the conceptual model
might be correct, the form of the relationships is not quite close enough (e.g., a
key relationship is implemented as linear when in fact it is nonlinear). Finally, an
inadequate parameterization might merely indicate that the data used to fit the curves
were insufficient. It is important to recognize these levels of model failure, because a
conceptual failure is a failure at a very basic (and personal!) level, while an
inadequate parameterization can be rectified by simply collecting more data:
model failures are not all equally damning.

9.6.1 Model “Goodness”

This discussion of model failure invites a more general discussion of how to evaluate
the relative “goodness” of a model. It is tempting to demand that a model reproduce
the behaviors of a real system rather exactly, and this expectation corresponds to a
conventional definition of model “goodness-of-fit” as applied to regression analysis.
But all models are, by definition, simplifications of reality and so all models
ultimately will fail this test.

Mankin et al. (1975) provided an insightful rubric for evaluating models. They
used Venn diagrams to illustrate the intersection between model behavior and the
observed behavior of the focal system (Fig. 9.9). In this, the encompassing space
U represents the set of all behaviors that might be observed of the real system (some
which have not yet been observed). The model demonstrates a set of behaviors M.
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Fig. 9.10 Tllustrations of a model (left) with high adequacy but perhaps low reliability and (right)
high reliability but lower adequacy

The real system has been observed to demonstrate a set of behaviors S, that is, we
have data representing S. The intersection of sets M and § is Q, the subset of
behaviors observed of the real system that the model can reproduce. Mankin et al.
noted, to begin, that a model can be useful if Q exists at all. This subset Q, in fact,
defines the model’s domain of applicability. To anticipate a bit, even if this domain is
very small, the model will be useful if we never stray from this domain in applying
the model. That is, even a “bad” model can be useful if we apply it carefully. Thus,
our task in model evaluation is to define this domain as a guide to confident
applications. And we might fine-tune the adage from All models are wrong but
some are useful (Box 1976) to All models are wrong but any model might be
useful—if used carefully.

Mankin et al. defined two more nuanced measures of model “goodness.” A
model’s adequacy increases as Q increases relative to S: the model can do more of
the things that the system is known to do. A model’s reliability increases as
O increases relative to M: more of what the model does is shared by the system
(equivalently, the model tends to not do things that the system has not been observed
to do). These distinctions are useful because they underscore the crucial insight that a
model can be quite useful even if it is often wrong. For example, a model with high
adequacy might reproduce system behavior but also exhibit many behaviors that
have not been observed of the system (Fig. 9.10, left); alternatively, a model might
have a very limited range of behaviors, all of these corresponding to behaviors
observed of the real system (Fig. 9.10, right). In the former case, the model might
often be “wrong” (make predictions not in S), but, importantly, we will never learn
anything new if we never push our understanding of the system toward behaviors
that have not yet been observed. In this sense, the latter model will be right as long as
the applications stay within its domain, but the model also will always be boring in
the sense that its predictions will always be familiar.

In other disciplines, the trade-offs between model reliability and adequacy are
sometimes easier to see. For example, physicists routinely use models that make
predictions that are outside the set of observed behaviors: discoveries of new planets
or new subatomic particles are often anticipated by models long before we have the
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technology to actually detect (measure) the new entity. In the strictest sense, these
discoveries are made by models that are wrong—they make predictions beyond the
boundaries of the known system—but we learn new and exciting things from this.
On the other hand, models in pharmacology and medicine must be constrained so
that their behaviors are within the accepted boundaries of the system: exceptions to
this might well be a matter of life or death.

9.6.2 Model Evolution

The Venn diagrams for model evaluation also underscore an important practical
issue in model evaluation: this is an ongoing process, in which the accumulated
weight of evidence defines the domains illustrated in the diagrams. Thus, a model
test (a comparison of model prediction or output to measured data) establishes a
single point in this space (i.e., somewhere in Fig. 9.9), and the domains of S, M, and
especially Q are defined only by accumulating a large number of points as test cases.
Thus, our understanding of a model, the definition of its domain of applicability, and
our trust in it evolve over time as the model is used.

Models also evolve in another sense, a sense that perhaps has more to do with
modelers than with models. Models tend to start simply, as modeling is, in its very
essence, a process of abstraction: the art of capturing the essential features of a
system as parsimoniously as possible. In testing, simple models of ecological
systems often are found wanting—they are inadequate. And so the natural tendency
is to add more complexity to the model, to make it more realistic (i.e., more
adequate). This tendency captures a fundamental dilemma in modeling, the trade-
off between simplicity and realism. As we have already noted, simple models tend to
be too simple to be realistic, while realistic models tend to be too realistic to be
simple. This trade-off can be expressed in terms of sins of omission and sins of
commission (Fig. 9.11). Sins of omission are model failures caused by oversimpli-
fication of the system (i.e., leaving out important details). Sins of commission are
model failures caused by inclusion of details that are poorly understood or inade-
quately represented (e.g., where the process is real but its parametric uncertainty is
very high). Importantly, model uncertainty increases in the aggregate as the level of

Fig. 9.11 Trade-offs in
model complexity, in terms
of model inclusions and
exclusions (after Gardner
and Urban (2003))

Sins of Sins of
Omission Commission

Model Error

low - Level of Detail Included - high
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detail increases, simply because of the increasing number of (perhaps poorly esti-
mated) processes included in the model. The trade-off curve implies an optimal level
of model complexity (i.e., the intersection of the two curves), but, in fact, this
balance can only be approached by actually implementing and evaluating a range
of models for the same system.

Gardner and Urban (2003) discussed this tendency for models to evolve toward
greater complexity.® This natural evolution, unfortunately, also tends to produce
models that are increasingly unwieldy, and more uncertain, even as the model’s
apparent adequacy increases. Missing from this evolutionary sequence is the step at
which modelers reassess the model, to simplify it if possible. Again, models are
simplifications of reality and the greatest utility of models comes from the insights
that can be garnered from this simplification. Urban (2005) reviewed some
approaches for simplifying complicated models.

9.7 Further Reading

Modeling has ebbed and flowed as a topic in ecology. There is a journal dedicated to
this topic (Ecological Modelling), but much of the foundational work is rather old
(but still useful), or new and quite specific to particular application domains (e.g.,
land use change modeling, species distribution modeling).

Haefner (1996) offered a general but useful treatment of modeling for biologists.
His book includes high-level guidance on model development, analysis, and evalu-
ation as well as pragmatic advice on implementation (e.g., how to choose an
appropriate curve to model a nonlinear relationship).

Mladenoff and Baker (1999) edited a collection of approaches to modeling forest
systems at the landscape scale. Dale (2003) is another guide for ecologists and
natural resource managers. Canham et al. (2003) is a compendium on the use of
models in ecosystem science. This book covers a wide range of material, including
some also covered in this chapter (e.g., trade-offs between realism and simplicity). In
that volume, Urban (2003) offers a commentary on the two-way partnership between
modelers and consumers of those models.

Zurrell et al. (2022) provide a wide-ranging review of ecological models and
applications. While their focus is on spatial applications in animal conservation and
restoration, their review and typology of modeling applications—and their practical
recommendations—are useful more generally.

*Bob Gardner and I developed this idea in conversations with Bob O’Neill. I still think of Fig. 9.11
as “O’Neill’s conjecture” because while we think this is true, it is really hard to demonstrate these
trends empirically for any actual model.
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9.8 Summary and Prospectus

While most landscape ecologists might not self-identify as modelers, the reality is
that much of landscape ecology and management relies—implicitly or explicitly—
on models of various types. An appreciation of how models work, and how they can
be applied usefully, is important to anyone working in this arena. Models can be
developed for many purposes, from conceptual guidance to very specific predictions,
but all models share a common ontology and a set of best practices for implemen-
tation, evaluation, and reporting.

Many models in landscape ecology originate in a data set that captures some
aspect of landscape behavior or change over time. Models help us synthesize and
extrapolate these observations. This might be by extrapolating, with a species
distribution model, a set of species observations from a limited census, to a map of
suitable habitat over the entire study area. It might be capturing a trend in monitoring
data and extrapolating that trend into the future, using models ranging from simple
regressions to complicated multi-agent simulators. Application domains tend to
evolve toward a shared set of modeling approaches and standards, a community of
practice.

An appreciation of the modeling process helps inform practitioners who encoun-
ter models developed and applied by others. In the best of cases, any modeling
application is presented in sufficient depth and nuance that the consumer can
understand why the model was constructed as it was, why it does what it does,
and what its behaviors or predictions imply (how these should be interpreted, what
uncertainties should temper any interpretation). This communication is a two-way
conversation: modelers need to be open and helpful, and end users of models need to
be informed consumers. In this sense, all of us are modelers.
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Chapter 10 )
Ecological Assessment Shex

Abstract Landscapes change over time, due to natural processes (succession),
disturbances (natural or human-induced), or deliberate interventions by managers.
Assessing observed changes and evaluating them relative to an expectation—eco-
logical assessment—is a crucial step in the adaptive management process. In this
chapter we begin by posing a framework in which to evaluate and visualize change
in ecological data sets, such as might be collected as part of a monitoring program.
Ordination (Chap. 4) provides this framework. The assessment is articulated in terms
of change vectors, movement over time in an ordination that summarizes ecological
condition. For discrete events, including management interventions conducted as
experiments, this framing leads to impact evaluation, which entails various forms of
before/after, control/intervention, or before/after/control/impact inferential designs.
Ecological assessment is the final task in the adaptive management cycle. As such,
this is the step that defines adaptive management and makes ecosystem management
a science-based enterprise.

10.1 Introduction

In the previous chapter we explored landscape change, with an emphasis on captur-
ing trends in land cover and projecting these to show their longer-term implications.
The changes we observed were those typical of a monitoring program, again with the
emphasis on land cover. But monitoring programs can track ecological changes
more subtle and multidimensional than land cover. For example, we might track
species composition on a set of monitoring sites (sample quadrats) over time and ask
questions about compositional changes due to succession, natural or human-caused
disturbances, or climate change. Or we might have implemented forestry, restora-
tion, or other interventions in the form of management experiments. In these cases,
we will want to know whether the treatments are having the intended effects. In each
of these cases, the focus is on interpreting the observed changes.

In this chapter we delve into the assessment of ecological change. The changes
might be due to any number of drivers, but the approach will be the same: we will
want to detect the changes, describe them, and interpret the changes in terms of
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formal or informal expectations. In terms of the overall workflow of this book, this
task represents the final stage (“react”) of the logical flow of adaptive management,
or the coming together of a braided stream of various applications (Preface, Fig. 2)
that all invite this sort of interpretation.

The “react” stage of the adaptive management cycle might imply that this stage is
a simple assessment of the underlying model, and the answer will be either “yes” or
“no”—the monitoring data are either consistent with the model or not. But ecological
change is rarely so straightforward. Often, ecological assessment begins with change
detection (as in Chap. 9), to determine whether the observed changes can be
distinguished from the background noise of natural variability. Beyond this, an
underlying model of the system often suggests a direction and perhaps magnitude
of change, and so the detection is gauged relative to these expectations. These are
rarely simple “yes/no” answers but rather matters of degree. Further, ecological
systems often present surprises over time, and so new questions or hypotheses might
arise from the data, beyond those that drove the collection of the data. In short, this
can get messy.

In this chapter, we approach ecological assessment as a multistage process. The
first task is to construct an interpretative framework in which change can be observed
and summarized effectively. Ordination (Chap. 4) provides this framework. The next
stage is to explore the observed changes and to refine hypotheses about the nature of
observed changes—those anticipated or expected, as well as any that emerge from
the data but without prior expectations. The final stage assesses these observed
changes inferentially, with an aim to either accept or reject the hypotheses. In the
simplest sense, these inferential tests would be forms of “before/after, control/
intervention” (BACI) designs as used in management experiments. But, again,
natural systems often do not behave so nicely, and we will need to consider other
approaches.

10.2 Ordination as a Framework

Ecological data are multivariate, redundant (correlated), and noisy. In Chap. 4, we
embraced ordination techniques as a way to summarize such data, extracting the
main trends into a low-dimensional reference space while suppressing noise. In
particular, we looked at nonmetric multidimensional scaling (NMS) as a tool that
maps ecological dissimilarities as directly as possible into ordination space. In this
ordination space, samples that are close together are ecologically similar while
samples that are far apart are ecologically dissimilar. Other ordinations can also
provide such a reference space, depending on the data, but NMS does this by design.

The basis for using NMS as a reference space for ecological assessment is that
observed changes in this space—movement of individual samples over time—can be
interpreted readily as ecological change. In this section we develop a conceptual
appreciation for how ecological change manifests in ordination space and how such
changes can be interpreted.
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Fig. 10.1 A change vector
in an NMS ordination space.
The vectors connect the
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change over that time
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10.2.1 Change Vectors

Samples can be ordinated into NMS space over time in either of two ways. In many
cases (and the simplest case), the data already include observations collected over
time. That is, the data matrix is samples x variables (e.g., species) x time. In this case,
the pooled samples are ordinated and the reference space represents all ecological
conditions as observed over time. In the second case, there is a reference set of
samples that defines the reference space, and new samples are added to this space as
they are collected. Of course, in this latter case, the ordination could also be
generated anew using the new samples; the choice might depend on how wedded
the investigator is to the original reference space (and how much any new samples
might diverge from this space). To begin, we will consider ordinations based on
species composition (with NMS, this means based on compositional dissimilarity;
recall Chap. 4, Sect. 4.3.2). But the approach can be generalized to an ordination on
any variables.

Given an ordination of samples over time, any sample can be connected to itself at
a subsequent measurement time, by drawing an arrow from its position at one time to
the next (Fig. 10.1). This arrow is a change vector. A series of vectors over multiple
measurement intervals would comprise a change trajectory. This trajectory might be
linear or curved, and the first task in ecological assessment is to interpret the change
vectors and trajectories ecologically.

Change vectors are not new (Goff and Zedler 1972), and they have been used in
various applications including restoration (e.g., Zedler and Calloway 1999) and
succession (e.g., Bergeron and Dubuc 1989; Smith and Urban 1988). Here we will
review the basics as these apply to ecological assessments. This interpretation is
relevant to monitoring programs (Chap. 1) and efforts to model landscape change
(Chap. 9).
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Vector Length

If sample separation in NMS space represents ecological dissimilarity, then move-
ment in this space represents ecological change. The length of a change vector
represents an amount of ecological change (as dissimilarity) over the observed
measurement interval. A longer vector represents more change; a short vector
represents less change. As these are defined for a given measurement interval,
these are change over time: rates of change. Longer vectors are more rapid change;
shorter vectors are slower.

Vector Direction

Change vectors have length but they also have direction. Because the axes of the
ordination have ecological interpretations, then direction of the change vector also
has an ecological interpretation or meaning. For example, if one of the axes
represents a moisture gradient, then movement along this dimension implies a
change in moisture status of the sample—or, more precisely, changes in species
compositional response to moisture.

In restoration ecology, the reference ordination space often includes samples
representing reference or target conditions (i.e., healthy or natural conditions) as
well as degraded sites that are candidates for restoration. In these cases, the reference
sites are typically separated from the degraded sites on one or both ordination axes.
And, so, a change vector in this space has not only meaning but also value: we think
some of the sites are better than others, and so a change can be better or worse.

Change Trajectories

Connecting a series of change vectors together over time generates a change
trajectory. Both the lengths and directions of vectors within this trajectory retain
their meanings, but the trajectory itself might have a shape (linear, curved), and this
shape might also have meaning.

In the particular case of restoration, we want the change trajectory to move from
degraded to target conditions, and we hope that this movement is direct (effective)
and rapid (efficient) (Fig. 10.2). This figure represents a conceptual model of how to
restore southwestern pine forests that are overly dense due to decades of fire
suppression (Allen et al. 2002), and it is helpful here to connect this to our previous
work. Here, the axes are conceptual constructs (“Structure,” “Process”), while the
attributes in smaller text on each axis would be empirical indicators for each axis.
We might construct the axes in a variety of ways: by ordination, factor analysis, or
weighted averaging (Chap. 4). The upper right domain of the figure (“Current
conditions™) represents degraded conditions, while the lower left domain is the
desired (reference) condition. The aim of restoration is to “move” samples from
the upper right to the lower left. In this case, the expectation is that this might occur
in stages over time (shaded ellipses).

In some systems, there might be some debate about how to get to the target
condition most efficiently. We might, for example, try to restore the structure of the
system with the expectation that process will follow; alternatively, we might try to
restore process and hope that this will restore system structure. These alternatives
imply different trajectories of change: nonlinear trajectories moving initially either
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Fig. 10.2 A change trajectory within an ordination that represents degraded sites to be restored,
along with target or reference conditions. An effective restoration treatment would move the
degraded sites toward target conditions directly and rapidly. (Redrawn with permission from
Allen et al. (2002); permission conveyed via Copyright Clearance Center, Inc.)

down (structure first) or to the left (process first) and then curving toward target
conditions. These are testable hypotheses within this reference space.

10.3 Workflow: Evaluating Change

The task of ecological assessment is a stepwise process of posing expectations and
then evaluating these with appropriate statistical tests. While it might seem that the
expectations would be self-evident, this might not be the case in multivariate systems
with substantial noise or natural variability. To be sure, it would be desirable for the
hypotheses to be stated up front, based on an underlying model. But we will retain
the right to discover additional or revised hypotheses along the way, by exploring the
reference space.

The workflow (Fig. 10.3) thus begins with a conceptual model, builds the
reference space (an ordination space), and then iteratively explores sample move-
ment (change vectors) in this space to pose testable hypotheses. Such tests—
significant or not—might then suggest revised or new hypotheses to explore.
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To be clear, in this approach, the ordination space serves the purpose of condens-
ing the multivariate richness of the system into a manageable, low-dimensional
construct. This makes it easier to visualize change and to pose questions or hypoth-
eses about the changes observed in this space. The actual evaluation—the statistical
tests—will be done using the richness (and noise) of the full data set.

10.3.1 Interpreting Change and Setting Expectations

It is impossible to declare at this point what changes might be interesting in the
constructed reference space: the interesting questions will depend on the system and
management context. But some possible questions can be identified in terms of
patterns that might be observed within such a space. There are several cases.

Vector Lengths in Different Domains of the Space

Vector lengths imply rates of ecological change over time, and there might be
instances where it is reasonable to expect samples in some parts of the space to
change at different rates compared to other regions.

For example, in a space where the axes represent environmental gradients of
some sort, we might expect drier sites to change more slowly than more mesic sites
because of the more favorable growing conditions (and higher growth rates) on the
better sites. The same logic might apply to temperature gradients, or other
conditions.
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In these cases, the tests will focus on vector lengths sorted somehow into regions
within the reference space. A box-and-whisker plot is a simple way to display and
explore these. Because the ecological distances underlying change vectors are not
independent, a formal test of group differences would entail a permutation version of
MANOVA (Anderson 2001), a Mantel test, or equivalent (recall Chap. 5 and
Supplement 5S.4 and Chap. 6). Oksanen et al. (2021) provide options for permuta-
tion tests under a variety of inferential designs.

Vector Lengths over Time

Change vectors over time might speed up or slow down, and this can represent
interesting ecology. For example, in succession we often expect changes to be
comparatively rapid initially, slowing down later as the system approaches a natural
endpoint or steady state (e.g., Odum 1969).

In such cases, the test of interest is a comparison of vector lengths over time.
Again, box-and-whisker plots are an easy way to explore these; a more formal test
would entail correlating the vector lengths with time as a variable (e.g., “year”) or
contrasting vector lengths for different time intervals (as discrete factors). While the
differences over time (vector lengths) might meet assumptions of normality required
of a parametric correlation, the underlying distances are not independent, and a more
cautious test would be a randomization version of the parametric test.

Vector Directions

The direction of a change vector often conveys ecological information and often
with a subjective value attached to the direction (e.g., restoration toward the desired
condition). In such cases, we might naturally ask whether observed changes are
heading in the right direction.

Testing the directions of change vectors is really feasible only in the 2D case, and
is complicated by the circular nature of directions (ranging from 0° to 360°). To
compare directions, the observed changes first must be converted to angles, relative
to the ordination axes (i.e., with the vertical axis representing northing and the
horizontal axis easting). To solve the circularity issue, these angles can then be
simplified to absolute departures (e.g., deviations from north). In cases where there is
a clear expectation for the direction of the vectors, the angles can be expressed as
departures from this direction (e.g., in Fig. 10.2, the desired restoration trajectory is
“southwest”).

In some applications, there might be groups whose directions are expected to
differ. For example, in a restoration project done as an experiment with control and
treatment samples, we would expect the treatment plots to show a clear and consis-
tent movement toward the desired future condition, while the control plots might
move less (shorter vectors) and in a less organized (perhaps random) way (Fig. 10.4).

Membership in a Group or Domain

Finally, we might like to know whether a sample can be assigned with confidence to
a group or a domain within the reference space. For example, in restoration, we
might want to know whether a sample under restoration has entered the domain of
the target conditions: Has the restoration been successful?
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Fig. 10.4 Schematic of a restoration project as framed in ordination space. The axes might be based
on species composition (e.g., indicator species) or biophysical factors. The target condition is
identified as a domain of samples (black dots) representing the desired or reference condition.
Paired treatment/control samples are shown as nearly adjacent in the space, suggesting their
ecological similarity (a matching exercise simplified in this space). Under treatment, we expect
the treatment samples to move toward the target domain, while the controls might show less and
perhaps random change. A treatment might be considered successful when it moves to fall within
the domain of the target condition. Here, the reference samples (black dots) are not shown moving,
but we would expect them to change as well, perhaps the way the control sites move

These tests entail assessing the locations of selected samples relative to a grouped
sample mean or centroid. For example, “Is a restoration treatment sample within the
domain defined by the target or reference condition?”. The question is whether that
sample is significantly different from the reference group centroid, given the vari-
ability within that group. In the simplest case, this is a one-sample z-test, but in
practice it is more often a multivariate test based on within-group distances or
dissimilarities.

If the underlying distances that define the ordination are biophysical, they might
be calculated as Mahalanobis distances (Chap. 3, Sect. 3.2.4). Mahalanobis distances
approximately follow a Chi-squared distribution (with degrees of freedom equal to
the number of raw variables), and so these distances can be converted into proba-
bilities based on the collection of reference samples. Any treatment sample then can
be assigned a probability that it falls within a user-defined confidence ellipse around
the reference samples. If the underlying variables are species composition, the
distances might have an unknown distribution, but the percentiles can be estimated
empirically to assign probabilities similarly.

In each of these cases, the aim is to pose an expectation about change vectors
observed in ordination space and to state this as a hypothesis that can be assessed
readily using familiar statistical tests. The tests typically would be conducted using
the full-dimensional data (e.g., based on all species or environmental factors), not the
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distances observed in ordination space. The ordination serves the sole purpose of
simplifying and organizing things so that changes can be observed and communi-
cated more readily.

10.3.2 Presentation and Reporting

While the details of any particular application will vary, all applications of this kind
share a similar burden of presentation and reporting. The necessary details include an
overview of the application, the details of constructing the reference space, how the
hypotheses were generated ecologically and how these were translated into tests
within the reference space, and the outcomes of these tests. Many of the components
of this presentation have been detailed previously (e.g., how to present an ordina-
tion), while other details will be specific to an application.
To describe the construction of the reference space, these details are critical:

A description of the data: what the samples are (samples, variables), sample sizes,
any data editing, or transformations of the original data.

What ordination was used to construct the reference space. If NMS, the choice of
distance measures, how the number of axes was decided, how the axes were
defined (e.g., via species scores or correlations with the original variables),
variance captured on each axis and cumulatively (and recall reporting guidelines
in Chap. 4).

As changes in ordination space will be interpreted as ecological change, a
Shepard diagram (plotting ecological distance versus ordination distance; see
Chap. 4) will illustrate the strength of this relationship.

To summarize the analysis of change:

A description of how change vectors were calculated (what time step?) and any
other post-processing that might affect interpretations.

A narrative explanation of observed change vectors or trajectories.

A clear statement of expectations to be tested, ecologically and in terms of change
vector lengths, directions, trajectories, or group membership.

Details on the statistical test of the hypotheses, framed in terms of the data used to
test these (i.e., full data set as compared to the ordination reference space),
including an explanation of how the results of such tests are to be interpreted
ecologically. These might be communicated in terms of the ordination reference
space, if this simplifies matters.

Takeaways from the tests, in narrative ecological terms.
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10.4 TIllustrations

We will delve into this general approach using two examples. The first begins as a
heuristic for ecological restoration and then looks at a real example. The second case
is on forest succession. Both examples are applications where the general approach
described here is in common use—although not always consistently so. We then turn
to the range of analytic approaches that might be used to assess various versions of
before/after studies of ecological change.

10.4.1 Ecological Restoration

A restoration project conducted as a management experiment nicely illustrates many
of the aspects of ecological assessment (reviewed by Urban 2006). To begin, the
ordination framework provides a simple means of choosing pairs of treatment/
control samples. Because samples that are close together in ordination space are
ecologically similar, choosing nearly adjacent samples as treatment/control pairs is a
form of pre-matching; the adjacent pairs will be as similar as possible on all aspects
except the treatment and should help satisfy the “all else being equal” clause that
often confounds management experiments.

Once the treatments are done, we have clear expectations about how the system
should respond: the treatment plots should move toward the target domain, while the
controls should show slower and less organized movement in the reference space
(we will revisit this expectation later). The restoration project is successful if/when
the treatment plots fall within the reference domain (Fig. 10.4).

Matthews and Spyreas (2010) used a framework like this to assess a wetland
restoration project in Illinois (USA). They constructed an NMS ordination frame-
work based on Bray-Curtis dissimilarities on plant species. They proposed four
possible restoration trajectories within this space, depending on whether the restored
sites converged or diverged within this space and whether they progressed toward
the target conditions or diverged away from the targets. Their first case (Fig. 10.5a) is
the one illustrated in Fig. 10.4. The second case (b) would occur if sites were restored
with a set of similar plant species which were subsequently filtered by different
environmental conditions on each site, leading to divergence. In the third case (c),
the sites converge toward the same endpoint but not the target conditions; and the
fourth case (d) is essentially unordered change. Within the reference space, they
identified domains of target conditions as well as degraded conditions.

They found that restored sites initially progressed toward the target conditions,
but over time they diverged and moved more toward the degraded sites. This was a
result of invasion by nonnative species, which essentially displaced the restoration
sites from their initial trajectory (Fig. 10.6).
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In this example, the ordination framework helped frame expectations about the
system and to interpret the observed trajectories—which did not conform to any
simple expectation.

10.4.2 Forest Succession

In the previous chapter, we devised a simple Markov model of forest succession in
the North Carolina Piedmont (USA), by space-for-time substitution, based on field
sites described by Oosting (1942) and interpreted by Odum (1953) and Johnston and
Odum (1956) (see Chap. 9, Sect. 9.4.1 and Figs. 9.7 and 9.8). Here we revisit this
case study but now based on monitoring data collected in the Duke Forest over a
period of roughly 80 years—enough time to actually observe succession. The data
and methods are described in more depth by Payne' and Peet (2023).

The data set comprised a set of 51 plots initially established in the 1930s. These
have been resurveyed regularly over time, at roughly 5-year intervals. There are a
total of 48 measurement years spanning 1933-2013, for a total sample size of
625 plot-year samples. Some of the plots have been lost over time (mostly to
development) and so the number of remeasurements varies among the plots.

In this data set, there were a total of 66 tree species observed; the analyses shown
here included 39 species that occurred on >5% of the samples. Compositional data
were relativized by column (species) maxima and row (sample) totals and converted
into extended Bray-Curtis dissimilarities (recall Chap. 3).

An NMS ordination was constructed in two dimensions following a step-down
procedure that examined solutions from six to one dimensions (Goslee and Urban
2007). In this, a single plot (and its remeasurements) was omitted, as it was
compositionally so unusual that it represented its own ordination axis. The
two-axis solution captured 73% of the variance in compositional dissimilarity,
with 49% of this on the first and 24% on the second axis. The Shepard diagram
(not shown) is linear but with scatter about the 1:1 line, suggested that this is a
reasonable reference space to use for this illustration. Review Chap. 4 for more on
the procedure of NMS.

The samples were classified into forest types by partitioning around medoids
(PAM; Kaufman and Rousseeuw (1990)). This analysis was repeated for two to ten
groups, and a six-group solution was selected based on among-group contrasts
evaluated with Mantel tests. See Chap. 5 for more detail on community classification
and PAM.

! Chris Payne kindly provided the cleaned and curated data shown here. Some of the results shown
here are slightly different from similar analyses in Payne and Peet (2023) because of minor
differences in data editing, transformations, and graphical decisions. Chris Payne and Bob Peet
kindly reviewed my presentation here.
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Fig. 10.7 NMS ordination of Duke Forest samples. Samples are color-coded according to classi-
fied community types. Species codes are located at their weighted-average positions on the axes (see
text)

Species were located into the NMS ordination at their weighted-average positions
on each axis (Oksanen et al. 2021), and samples were color-coded by community
type. The NMS ordination (Fig. 10.7) reveals a successional gradient on the first
axis, with pines (mostly loblolly, P. taeda [Plta], in red, but also shortleaf
(P. echinata, Plec), in black, on the left side of this axis. Mature hardwoods (various
oaks and hickories, Quercus and Carya), in green, occupy the right side. A mixed
forest with many other hardwoods occupies the center of the ordination (in cyan).
The second axis suggests a soil moisture gradient, with more mesic sites toward the
top and more xeric sites near the bottom of this axis. In this figure, the ordination has
been cropped slightly on the left side, to ignore an outlier plot and make the image
(slightly!) more legible.

In the figure, the six community types include three of less interest here: Shortleaf
pine (Plec, in black) changes over time but remains its own type. A xeric hardwood
type (in violet) is rather uncommon. A mesic hardwood type (in blue) includes
species such as beech (Fagus grandifolia, FAgr) and associates typical of bottom-
land forests. Our focus here is on the loblolly pine/mixed hardwood (cyan, in the
figure) and oak-hickory forest types (in green). Note that the mixed forest type also
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Fig. 10.8 Change vectors for a few selected sample plots in the NMS ordination of data from the
Duke Forest. Vectors all flow from left to right and are colored according to the community type in
which they end, so a change in color implies a change in forest type. These examples represent
loblolly pine and oak-hickory types (see text)

includes mature loblolly pine (Plta; its maximum abundance, in fact, occurs in this
type) but also includes many codominant hardwood species.

According to the successional sequence implied by space-for-time substitution
(Chap. 9, Figs. 9.7 and 9.8), successional change vectors should move from the left
side of the ordination and converge toward the far right side, that is, pines succeeding
to forests similar to the presettlement oak-hickory forest. What is observed is a
convergence of pine stands toward the middle of the ordination, while the
oak-hickory stands show very little movement (as we might expect for a mature
forest) (Fig. 10.8).

What is happening in these forests is that a few species have increased dramat-
ically in abundance over time: red maple (Acer rubrum, ACru), sweet gum (Liquid-
ambar styraciflua, LIst), tulip tree (Liriodendron tulipifera, LItu), and beech (Fagus
grandifolia, FAgr). These species are located near the center of the ordination, and
most early-successional samples are converging toward what is a new forest type
that was not represented early in the time series. (To give full credit, Oosting (1942)
noted the increasing abundance of these species in the understory of pine stands, so
perhaps he would not be surprised at this result!) These species show affinities to
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more bottomland or mesic conditions, and the resulting trend is mesophication
(Nowicki and Abrams 2008).

Further exploration of this example allows us to assess the rates of change among
community types and for younger as compared to older forests. While vector lengths
do vary slightly among types (P < 0.001), they do not vary much, nor in the
directions expected. These tests were conducted on the original compositional
dissimilarities, i.e., 39-dimensional as compared to the 2-dimensional ordination.
Still, the 2D vector lengths are good proxies for the 39D vector lengths: in a
regression, the 2D vectors predict the full-dimensional versions with a slope of
0.955 (ideally, it would be 1.0), adjusted # =0.73, P < 0.0001.

This time series includes more than a simple successional sequence; it also
includes some major disturbances. We can isolate before/after samples capturing
Hurricanes Hazel (in 1954) and Fran (in 1996). Both were very intense storms that
passed through the Duke Forest. Hazel struck some younger stands (samples that
would have been old fields just prior to the 1930s would have been ~30-50 years old
in 1954). Selected change vectors for some of these plots (not shown) move right to
left, suggesting that the disturbance “converted” them back to pine stands (other
vector directions are observed as well). By contrast, stands were older when Fran
struck, and change vectors for some of these stands move mostly left to right—
suggesting that disturbance has facilitated conversion to hardwoods (i.e., by remov-
ing the overstory and releasing hardwoods in the understory). Payne and Peet (2023)
explore the effects of both Hazel and Fran in this system, and Xi et al. (2008a,b,
2012, 2019) have analyzed the effects of Fran on Duke Forest in much more depth.

It can be a bit confusing to look at an ordination space in which all samples are
pooled over time. One way to sort this out is to color-code the samples by time, in
this case, summarized by decade (Fig. 10.9). This coding makes it clear that younger
pine stands occurred only in the early decades and are now gone (i.e., the left side of
the ordination space has been vacated), with older samples collecting in the mixed
forest type in the center of the ordination. By contrast, the oak-hickory domain of the
ordination shows a mix of samples of all ages.

The takeaway message from this example is its value as a reference space, a tool
for organizing hypotheses so that they can be readily interpreted and presented.
Again, Payne and Peet (2023) discuss this system in much more depth. In particular,
they emphasize the combined influences of environmental variables (topography,
soil texture, and chemistry), fire suppression, browsing by white-tailed deer,
increases in invasive species, declines in other species due to pathogens (Dutch
elm disease, dogwood anthracnose), and disturbances (hurricanes, windstorms, ice
storms). . .. This is a complicated story about forest change!

And, finally, it is perhaps worth underscoring here the crucial importance of long-
term monitoring data for ecology. In this case, an iconic model of succession based
on early data has been evaluated and revised based on later measurements from the
same system.
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Fig. 10.9 The NMS ordination of Duke Forest samples, with samples color-coded by year of
measurement (by decade). This rendition highlights the convergence of successional samples
toward the mixed hardwood type in the center, while oak-hickory samples (right side) show a
mix of ages

10.5 Ecological Impact Assessment

Monitoring data often reveal trends in univariate or multivariate data sets. While
ecologists have long used various statistical tools for evaluating such trends (e.g.,
Philippi et al. 1988), we have been less successful in adopting tools that are sensitive
to the range of possible outcomes. The tools of impact assessment are only recently
being applied in environmental applications. Baylis et al. (2016) consider some of
the reasons for this slow adoption. Sutherland et al. (2004) emphasized that impact
assessment is crucial to evidence-based management. Evidence-based management
depends on the critical evaluation of monitoring data, especially the results of
management interventions. This, in turn, is the crucial last step in the plan-act-
monitor-react adaptive management cycle: to react to what we have observed
through monitoring. In this last section, we focus on the react stage of adaptive
management.
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We will generalize this discussion somewhat by defining our terms rather
broadly. Monitoring data will comprise measurements, over time, of any focal
species, species composition, or measures of environmental condition (e.g., habitat
suitability). The impacts of interest might be the results of a deliberate management
intervention constructed as an experiment, or the effects of implementing a new
policy instrument, the impacts of natural events (fires, floods, human-caused disas-
ters such as oil spills), or climatic events. In every case, we are looking for evidence
of the effect of a discrete intervention. This is a more narrow focus than exploring
continuous change such as succession or ecosystem response to chronic stressors
(e.g., pollution) or climate change. But system responses to discrete events are a
huge part of environmental management.

While we all probably recognize the litmus-test standard of a randomized con-
trolled trial (RCT) in evaluating impacts, this approach is typically rather difficult to
implement on landscapes because of the sheer logistics. Instead, ecologists rely on
quasi-experimental approaches. The key to this is to identify a plausible counter-
factual: a “before” condition that unambiguously isolates the effect of the treatment.
Counterfactuals can be constructed in a variety of ways, and these correspond to a
variety of inferential designs. In perhaps the simplest case, we have observations
before and after the event of interest (e.g., a disturbance), and the counterfactual is
that the “after” measurements should match the “before” measurements: a before/
after (BA) design. Similarly, we might have measurements for a management
experiment along with measurements for unmanaged sites: a control/intervention
or control/impact (CI) design. The counterfactual is that the control sites actually do
control other factors so that we can meet the “all other things being equal” assump-
tion. In both cases, the statistical test is that the paired sets of measurements are
different (the null hypothesis being that they are not). In such cases, pre-matching of
controls to experimental samples can help this inference—an approach that we have
adopted based on measures of ecological similarity (Sect. 10.4.1). Schleicher et al.
(2020) discuss matching as used in many quasi-experimental designs for conserva-
tion science.

But there are a variety of alternative approaches (reviewed by Larsen et al. 2019),
many of which can provide more inferential leverage. Perhaps the most intuitive of
these is the before/after, control/intervention (or impact) (BACI) design. Chevalier
et al. (2019) helped clarify interpretations of BACI designs for ecologists. Building
on this, Wauchope et al. (2021) have provided a helpful overview of ecological
impact evaluation that admits various outcomes of natural or experimental interven-
tions. It is easiest to develop these for the simplest case of a single response variable,
the abundance of a focal species. We can expand this to multivariate cases later.

To begin, we should appreciate that there might be a range of responses to a
discrete event and its aftermath: the event might elicit (1) an immediate change in
species abundance; (2) a change in the average abundance of the species for “after”
as compared to “before” conditions, with or without similar differences in the
“control/intervention” contrast; or (3) a change in the frend in species abundance
before and after, regardless of the direction of those trends (Fig. 10.10). Assessing



302 10 Ecological Assessment

BA BACI
A ! B|®, ° © ¢ v
: —'_ V=
§ E .o - ‘i E .o - ‘i ‘
< ® I¢ e %o ° '¢ o %o
1Ye Ve
:. L [ ] !. L4 [}
Time Time
C ! D
A g
3 | g
= ° ¢
N
1 ® o
Time
E ! F
3 |
(] 1
= ® ° H
3 3 o ! g
E g i,/‘ )

Time

— Intervention time series A Positive impact
— Control time series ¥ Negative impact

Fig. 10.10 Schematic illustrating the range of outcomes that might be observed from a discrete
event (management experiment, natural disturbance) and its impact on the abundance of a focal
species (after Wauchope et al. 2021, licensed via Creative Commons). See text for fuller explana-
tion of the cases

these outcomes depends on whether there are control/intervention samples as com-
pared to before/after measures (i.e., BA as compared to BACI designs).

The cases illustrated in Fig. 10.10 do not highlight the “parallel trends” assump-
tion that can facilitate these analyses. If met, this would show parallel trend lines for
cases (d) and (f), which would simplify the estimation. It is not clear how often this
assumption might be met, and so the assumption that the trends are not parallel is
shown in Fig. 10.10.

The illustrated cases highlight some possible pitfalls in simple interpretations of
change. For example, in Fig. 10.10c, the “after” mean is lower than the “before”
mean, and a simple BA design would miss the improved trend in the “after” series.
Cases can get more complicated in a BACI design where there are trends in the data
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both before and after displacements by the intervention (cases (d) and (f) in
Fig. 10.10); again, it is easiest if these trends are parallel.

Wauchope et al. (2021) detail the estimation of the inferences in this range of
cases, in terms of a regression problem. In the examples below, ecosystem response
is denoted by the dependent variable y (here, the abundance of a focal species), and
the other terms are as defined below.

BA or CI Design In the simple case, the measurements are paired, either before/
after or control/intervention. In this case, the explanatory variable is binary and the
main effect captures any observed differences. As a regression, this model takes
the form:

y=BA +¢ (10.1)

where BA is coded O for “before” and 1 for “after.” Samples are pooled in the
analysis so that the effect is averaged within each group. A significant coefficient for
the BA term means that the “after” effect is real. The same model applies to a
“control/intervention” (CI) model, with the same interpretation.

In practice, the power to detect a difference depends on the internal variability of
the samples and the extent to which other confounding sources of variability can be
controlled. This is where matching the samples can help. If this is done before-the-
fact (e.g., for a management experiment), it is pre-matching; if done by aggregating
an after-the-fact control (e.g., to interpret an event that has already happened), this is
a synthetic control approach. In this, a synthetic control is constructed (typically, by
weighted averaging) to “look like” the “before” conditions, with the assumption that
deviations from this synthetic control can be attributed only to the treatment.

BACI Design The standard for experiments, the BACI design, collects measure-
ments on control and intervention samples, before and after the intervention. This
implies a slightly richer model:

y=BA+CI+ (BA-CI)+e¢ (10.2)

where the new CI term is also coded 0/1 for control versus intervention. The average
effects are captured in either the BA or CI terms. Here, the intervention effect as an
immediate effect is captured in the coefficient for the interaction term (BA - CI).
A positive coefficient implies that the intervention samples have higher post-
treatment values than the controls, relative to the before/after contrasts. This inter-
pretation holds whether before/after differences are positive or negative.

BACI Time Series In many cases, the pre- and post-event measurements are not
single measures but are repeated, a time series. These are termed BACI-PS, for
paired series versions of the BACI design. This is the case that admits a wider range
of responses. The regression model is:



304 10 Ecological Assessment

y=BA + CI + Time + (BA - CI) + (BA - Time) 10.3
+ (CI - Time) + (BA - CI - Time) + ¢ (10.3)
where Time is a continuous variable (e.g., “Year”). In this, the interaction between
BA and CI again captures the immediate change in the response variable. The
interaction between CI and Time tests the assumption that trends were similar for
control and intervention sites before the intervention (the parallel trends assump-
tion), which conditions the interpretation of post-impact trends. The three-way
interaction between BA, CI, and Time captures any change in the trends before and
after for the control as compared to the intervention samples.

This can get complicated. Equation 10.3 has seven coefficients, each with its own
interpretation. The situation can get more complicated if there are time lags in system
response, or if the responses are nonlinear. Wauchope et al. (2021) offer some
guidance for such cases. Thialt et al. (2017, 2019) have described extensions to
the BACI-PS approach, termed progressive-change BACI-PS, which allow step
changes, lags, as well as linear, asymptotic, or sigmoidal responses post-
intervention.

In the examples here, the response variable is univariate, a focal species. But the
monitoring data might include observations of several species. While we have spent
considerable time in this chapter (and this book!) on multivariate responses,
Wauchope et al. (2021) recommend using a single-species approach and aggregating
or synthesizing results over all species after the fact. While this is due partly to
analytic complexities (the approaches outlined above have not been implemented for
multivariate responses), as a practical matter, it might be that all species do not
respond in the same way. An after-the-fact summary can capture this for interpreta-
tion and presentation.

Clearly, these analyses can get a bit nuanced and data-hungry. The most impor-
tant implication of this is to underscore the crucial need to plan for the analyses and
to collect data that will have the leverage to capture these effects.

10.6 Further Reading

In this chapter we adopted ordination as a framework for assessments. We devoted
Chap. 4 to this topic, but McCune and Grace (2002) and Legendre and Legendre
(2012) are authoritative references on these tools and provide more in-depth cover-
age. Restoration ecology is an enormous field, but early efforts to organize the
discipline around ecological experiments remain a useful introduction (e.g., Allen
et al. 1997, 2002; Falk et al. 2006; Suding 2011). The Society for Ecological
Restoration (http://ser.org) provides resources on restoration. Succession is an
even larger topic; Payne and Peet (2023) point to many of the key concepts and
provide a convenient entry into this huge literature from the perspective adopted in
this chapter.
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Impact analysis is a crucial topic in many disciplines, some not so closely aligned
with our purposes here. Sutherland et al. (2004) provide an accessible introduction
from the perspective of evidence-based conservation, and reviews aimed at ecolo-
gists in general or specific to conservation practice are provided by Baylis et al.
(2016), Chevalier et al. (2019), Larsen et al. (2019), and Wauchope et al. (2021).
These papers also offer some review of similar applications by other names as used
in other disciplines (the jargon can be confusing).

10.7 Summary and Prospectus

Ecological assessment entails the evaluation of changes observed over time, either
continuous changes or those in response to discrete events such as management
interventions or disturbances. We have adopted ordination as a framework for
assessing such changes, because ordination offers powerful summary and ready
communication in graphical form. We begin assessments in exploratory mode,
because while we might have specific expectations going into the analysis, ecolog-
ical data often surprise us. By exploring change vectors or change trajectories within
ordination space, we can often frame specific hypotheses so they can be evaluated
analytically. New hypotheses often arise from exploratory analyses. We considered
two popular application areas: ecological restoration and forest succession.

Assessments are often aimed at ecological responses to discrete events. In such
cases, the analysis is some form of impact assessment using a BACI design or, more
recently, BACI-PS methods for time-series data. Guidance for ecologists using such
tools is emerging, which should support more robust approaches to evidence-based
environmental management.

The classic rubric for evidence-based management is the adaptive management
cycle “plan-act-monitor-react.” We have followed this path throughout this book
(with some scenic detours into other areas). The first key to this is the “plan”—which
we have invoked at least conceptually in most chapters (and explicitly in Chap. 7)
and especially in the form of means-ends models that underpin structured decision-
making (Chap. 8). We spent several chapters (especially Chaps. 3, 4, 5, and 6) in
developing a facility for ecological data analysis and in interpreting ecological
change (Chap. 9). These prepared us to embrace the “react” stage of the cycle in
this chapter.

To be sure, there are other tasks in landscape ecology and management beyond
those covered in this book. And the tools of the trade will continue to evolve. But the
material in this book should provide a solid foundation on which to build.
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A
Adaptive management, vi—viii
act, vi
monitor, 257
plan, vi, 254
react, 286, 300
Autocorrelation, 15, 155
causes, 15, 155
correlogram, 157
Moran’s I, 16, 157
and sampling design, 16
Autoregression, 160

B
BACI design, 301, 303
Beta-diversity, 90, 168

C
Canonical correspondence analysis, 108, 169
See also Ordination
Classification, 127
among-group differences, 132
association analysis, 131
clustering, 130, 133
divisive, 131
K-means, 130, 139
Mantel test, 141
and ordination, 134
partitioning around medoids, 140
pooling, 130, 138
reporting, 149
Sierran forests, 142
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TWINSPAN, 131
unsupervised, 130
workflow, 132

See also Supplement S5

Classification and regression tree, 63—64, 149

Climate envelope model, 42
Cluster analysis, 129, 133-138, 146
joining rules, 134
See also Classification
Collinearity, 99
Confusion matrix, 52, 149, 150
Conservation planning, 215
greedy heuristic algorithm, 217
MARXAN, 216
minimum representation, 215
optimization, 215
simulated annealing, 216
systematic planning, 215
targets, 216
See also Site prioritization
Correlation matrix, 82, 97, 110, 111
Correspondence analysis, 107
See also Ordination
Covariance matrix, 86, 109, 110

D
Dissimilarity matrix, see Distance matrix

Distance-based redundancy analysis, 108, 172

See also Ordination
Distance matrix, 88, 109, 116, 162, 163
Bray-Curtis distance, 89
Euclidean distance, 88
Mahalanobis distance, 88
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Ecological assessment

BACI design, 301, 303
BACI time series, 303
before/after design, 301, 303
change trajectory, 287
change vectors, 293
control/impact design, 301, 303
expectations, 289, 305
forest succession, 296
impact evaluation, 301
ordination framework, 294
reporting, 293

restoration, 294

wetland restoration, 295
workflow, 289

See also Landscape change

Ecological data, 81

Bray-Curtis distance, 89

correlation (covariance) matrix, 86

data transformations, 84, 175

ecological distance, 88, 116, 134, 162

environmental data matrix, 82
Euclidean distance, 88
extended distances, 90
Mahalanobis distance, 88
primary data matrix, 82, 168
secondary data matrix, 85
species association, 87

Ecological data sets

ancillary data matrix, 83
environmental data matrix, 82
primary data matrix, 82
secondary data matrix, 85
spatial data matrix, 81

species data matrix, 82

Ecosystem services, 214, 237-238

beneficiaries, 238
benefit-relevant indicators, 239
co-benefits and trade-offs, 240
and conservation planning, 237
definition, 237

means-end models, 240-244
social outcomes, 239
stakeholders, 238

See also Site prioritization

Index

dominance-diversity curve, 94
environmental data, 96

mapping, 96

outliers, 97

pairs plots, 97

reporting, 101

Sierran forests, 93

species data, 92

species-environment relationships, 40, 100
workflow, 91

F
Factor analysis, 107

See also Ordination; Supplement S4
Fire ecology and restoration, 243, 288
Forest succession, 262-264, 294

G
Generalized additive model, 63
Generalized linear model development
likelihood, 266
species distribution modeling, 47
Geostatistics, 160
Greedy heuristic algorithm, 217

H

Habitat classification, see Species distribution
modeling

I

Indicator species analysis, 144
Indicator variable, 107, 188, 192, 229
Inventory

estimation, 9

sampling design, 8

K

K-means pooling, 130
See also Classification

Kriging, 160

Eigenanalysis, 111
See also Supplement S4 L
Environmental niche model, see Species Land cover change
distribution modeling monitoring, 256
Exploratory data analysis, 90 Landscape change
collinearity and redundancy, 40, 99 change detection, 251, 286
correlations between species, 97 extended models, 267
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forecasting, 253
models, 266
simple models, 263
See also Ecological assessment; Models;
Monitoring
Latent variable, 107, 188, 192
Logistic regression, see Generalized linear
model

M
Mantel test, 120, 141, 162-169
Maximum entropy modeling (maxent), 70-73
See also Species distribution modeling
Models
adequacy, 277
agent—based models, 267
attribution, 201, 272
conceptual, 196, 253
development stages, 253
domain of applicability, 277
evolution, 278
extrapolation, 46
forecasting, 46, 271
forest succession, 262-264, 294
interpolation, 46
landscape change, 258-269
land use change, 267
mapping, 273
Markov model, 260268
and modelers, 256, 269
PNW (USA) forest management, 262
purposes, 253
reliability, 277
reporting, 275
scenarios, 201, 271
sensitivity, 270
transition matrix, 259
uncertainty, 270
validation, 46, 255
verification, 45, 255, 261
workflow, 254
Monitoring
land cover change, 256
sampling design, 9
trend detection, 252, 256, 286
Moran eigenvector map, 171
Multivariate regression
RDA, CCA, and dbRDA, 170
with spatial predictors, 170
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N
Nonmetric multidimensional scaling, 116-122,
169, 286, 298, 300
See also Ordination

0o
Ordination, 105
alternative models, 105, 108
biplot, 114
canonical correspondence analysis, 169
change vector, 287
constrained ordination, 107, 169
correspondence analysis, 107
direct ordination, 107
distance-based redundancy analysis, 108,
169
factor analysis, 108
indirect ordination, 107
interpretation, 112
joint biplot, 116, 121, 175
joint plot, 116
nonmetric multidimensional scaling, 108,
138
principal components analysis, 107, 110
principal coordinates analysis, 108
redundancy analysis, 108, 169, 172
reporting, 116
Sierran forests, 112
weighted-averaging, 115
workflow, 108
See also Supplement S4

P
Path analysis, 166, 189-193
path diagram, 190
path effect, 190
See also Structural equation modeling
Path model, 204, 227, 241, 242
Principal components analysis, 110-116
See also Ordination
Principal coordinates analysis, 108
See also Ordination

R

Reciprocal averaging, see Correspondence
analysis

Redundancy analysis, 108, 169, 172
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Redundancy analysis (cont.)
See also Ordination objectives, 214
Resource selection function, see Species patch geometry, 220
distribution modeling rarity, 219
reporting, 236
targets, 214, 219, 221
S workflow, 223
Sampling, 1 See also Conservation planning; Ecosystem

multi-criteria utility analysis, 228

blocking, 13

elements of design, 2

heuristic sampling, 20
inferential design, 10, 12, 13, 41
inventory and monitoring, 8
multi-phase sampling, 24
nested designs, 7

partial regression design, 19
randomization, 13

replication, 13

reporting, 25

rotating panel, 23

sample arrangement, 3, 4
sample independence, 15
sample units, 3

sequential interference design, 18
spatial designs, 14

species distribution modeling, 1, 37
stratification, 6

thematic resolution, 4

virtual pilot studies, 20
workflow, 23

Semivariance, 17

variogram, 157, 158
See also Autocorrelation

Sierran forests

classification, 144, 146, 147
exploratory data analysis, 91-101
multivariate spatial regression, 169
ordination, 119, 145

principal components analysis, 107
spatial analysis, 159, 167, 175, 176
variance partitioning, 181

Site prioritization

approaches, 213

complementarity, 218

connectivity, 219

cost effectiveness analysis, 239
criteria, 214

decision support, 215

ecosystem services, 237

geospatial models, 229, 234

greedy heuristic algorithm, 217-223
indicator variable, 229
multi-criteria decision analysis, 214

services; Structured decision-making

Spatial analysis, 154
autocorrelation, 154, 155
autoregression, 160
geostatistics, 157
kriging, 160
Mantel test, 161
Moran eigenvector map, 170

multivariate spatial regression, 169-182

network model, 171
reporting, 166, 174
semivariance, 157
variance partitioning, 173, 181
wavelet analysis, 158
workflow, 161, 171

Species distribution modeling
applications, 45
AUC, 56
biotic interactions, 35
classification success, 52
confusion matrix, 52
cross-validation, 46, 67
data model, 37
ecological model, 31
ensemble models, 46, 68
generalized additive model, 63
gradient response by plants, 32
habitat selection by animals, 34
inferential design, 41
mapping 57
maximum entropy (maxent), 69
model accuracy, 53
model evaluation, 49
presence-only model, 43
pseudo-absences, 42
random forest, 68
reporting, 60
ROC curve, 53
scaling considerations, 36
sensitivity, 54
specificity, 54
statistical model, 41
translation, 31
true negative, 54
true positive, 54
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validation, 46
variable importance, 51
variable selection, 40
verification, 44
workflow, 31, 44
See also Supplement S2

Stream restoration, 240

Structural equation modeling, 188
assumptions, 192
causal model, 188
composite variable, 197
conditional independence, 195
and experiments, 210
extensions, 201
and factor analysis, 192
indicator variable, 197
latent variable, 189, 193, 197
measurement model, 188
model evaluation, 200
model queries, 200
modern SEM, 195
modification index, 199
observed variable, 192, 197
path coefficients, 190
prototype (construct) model, 198
reporting, 201
urban plant biodiversity, 209
urban stream syndrome, 209
wetland restoration, 203205
workflow, 196

Structured decision-making, 214, 223
benefit-cost analysis, 233
co-benefits and trade-offs, 240
deciding, 235
decision matrix, 227
ecological performance, 231
means-end model, 225, 240
monetizing value, 233
multi-attribute utility theory, 228
objectives hierarchy, 229
reporting, 236

stakeholder preference, 232, 234

uncertainty, 235

utility, 232

workflow, 223

See also Conservation planning; Site
prioritization

T
Tree-based models, 63
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classification and regression tree, 63, 149

random forest, 64

U

Urbanization
development likelihood, 268
plant biodiversity, 209
urban stream syndrome, 209, 272

\"
Variance partitioning, 43, 161, 174, 175

W
Wavelet analysis, 158
Wetland restoration, 211, 305
Workflow, viii
classification, 127
ecological assessment, 285
exploratory data analysis, 82
modeling, 253
multivariate spatial regression, 169
ordination, 105
sampling, 23
spatial analysis, 161
species distribution modeling, 30, 44
structural equation modeling, 196
structured decision-making, 223
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