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Abstract

Biological diversity is a critical component controlling ecosystem function and resiliency, yet it
remains difficult to measure at the spatial and temporal scales relevant to conservation. Recently,
biodiversity surrogates have emerged as a potentially useful tool for estimating the ability of a
habitat patch to support biological diversity over the long-term, termed biodiversity support
potential. The objective of the present study was to assess the biodiversity support potential of
forest habitat patches in North Carolina. I used the diversity of unique land cover types and
biophysical conditions as surrogates for biodiversity. Biophysical conditions were captured
through the use of terrain-based indices: a topographic convergence index, potential radiation
load, and elevation; these were indexed and combined to generate unique environmental
conditions affecting the distribution of plant community types. Modeled estimates of soil
moisture were ground-truthed to verify that topographic convergence is a reasonable index of
soil moisture. Natural Heritage Element Occurrences were used to weight discrete
environmental conditions and land covers according to their current biodiversity value. Finally,
Significant Natural Heritage Areas were used as a reference to assesses whether biodiversity
surrogates effectively capture habitats presumed to have the highest biodiversity value, and thus,
whether surrogates are capable of evaluating existing networks of protected lands and identifying
conservation priorities. The study revealed that both environmental settings and vegetation
community types may be effectively used as surrogates for biodiversity. While surrogate
assessment suggests that current biodiversity value (as estimated by weighted metrics) should be
considered distinct from biodiversity support potential (as estimated by unweighted zip code
diversity), both metrics are relevant and should be incorporated into large-scale conservation

planning initiatives. Using geospatial tools developed in this study, estimates of biodiversity



support potential and value can be generated for all regions of the United States using existing,
publicly available data. Environmental settings may be adjusted to capture the most relevant
characteristics of each ecoregion, especially as additional data sets (including fine-scale soils
data) becomes nationally available. Biodiversity surrogates may also be readily calibrated
through the use Natural Heritage data, and I call for increased cooperation and data-sharing in
future conservation planning and implementation efforts. Prioritization of land for conservation
will continue to move toward the inclusion and overlay of multiple ecosystem services;

biodiversity surrogates should be used to ground these initiatives with biologically relevant

priorities.
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Introduction
The character of conservation is changing. From a narrow focus on the conservation of
biodiversity, in which society was considered a separate, disruptive part of the landscape,
conservation is shifting in an effort to capture multiple objectives, both natural and societal. In
particular, it seeks to value and conserve biodiversity as a critical element in the provision of
ecosystem services, which broadly describe the suite of biotic and abiotic processes by which
material and energy flows through the environment are regulated (Naeem et al., 1999). By
providing ecosystem goods and sustaining biodiversity, these processes provide both direct and
indirect benefits to human welfare (Costanza et al., 1998). These goods generally include the
maintenance of air and water quality and the sequestration of atmospheric carbon, but may also
include the provision of recreational opportunity, aesthetic beauty, and other less tangible
benefits (Daily et al., 1997; Naeem et al., 1999). Indeed, conservation organizations and state
wildlife agencies are under growing pressure to protect and/or restore land with the greatest

potential for maintaining biodiversity and providing ecosystem services in the long-term.

Unfortunately, many of these services are not considered in traditional market economies, nor
are the role of ecosystem services in producing market goods recognized. Consequently, they are
often undervalued by society (Daily et al., 1997). The tendency to overlook and/or undervalue
ecosystem services is a major driver behind the degradation or conversion of natural systems
(Daily et al., 1997). Their valuation and integration into market economies necessarily depends
on developing systems for quantifying and comparing the spatial provision of services, as habitat
types differ in their ability to support biodiversity, sequester carbon, or protect watershed
integrity (Balvanera et al., 2001). These efforts must independently evaluate and subsequently

overlay services in order to generate a more complete measure of ecosystem value. Despite the



inherent difficulty and a high degree of uncertainty, such efforts are beginning to be incorporated
into conservation planning initiatives. By examining the character and spatial variability of
habitats across the landscape, conservation planning may direct resources toward regions with

the greatest potential for providing and sustaining the most valuable suite of ecosystem services.

While biodiversity itself is not typically considered an ecosystem service, recent studies have
demonstrated that ecosystem function and resilience are directly tied to the number and
composition of resident species (Naeem et al., 1998; Naeem et al., 1999). Therefore, biodiversity
must, in some form, be integrated into techniques for valuing ecosystem services. However, the
biological diversity of an individual habitat patch, defined here as a discrete block of contiguous
habitat, remains difficult to assess directly. The data needed to estimate biodiversity are not
typically available at the spatial and temporal scales relevant to conservation planning and
management decisions. Further, limited knowledge of species life history traits, distribution, and
abundance makes fine-scale distribution modeling of species and/or communities difficult
(Schumaker, 1996) and more susceptible to limited sample size (Ferrier, 2002). Given these
difficulties, some have begun to argue in favor of using biodiversity surrogates to inform
conservation planning (Ferrier, 2002). Surrogates typically include unique habitat types or
biophysical settings; rather than seeking to estimate the number of species within a particular
habitat patch, biodiversity surrogates estimate the ability of a habitat patch to support and
maintain biodiversity in the face of future environmental change. Thus, surrogates capture what

may be termed biodiversity support potential.

There are two primary classes of biodiversity surrogates, both of which are derived from
remotely sensed data. First, classified land cover types are used to estimate the diversity of

dominant habitat types (e.g., unique forest and/or wetland communities) within a habitat patch;



in theory, conservation resources should be directed so as to maximize the area and diversity of
these habitats. The approach assumes that the majority of species typically associated with each
habitat or community type will be conserved through the protection of that habitat (Ferrier,
2002). The second approach is to estimate unique ‘environmental settings’ that effectively
capture the primary biophysical constraints relevant to plant species and communities (Araujo et
al., 2001; Ferrier, 2002; Stephenson, 1990 & 1998; Urban et al., 2000). In addition to directly
controlling the distribution and abundance of plant communities, these constraints may also
indirectly control the distribution of wildlife species, as many species tend to rely on particular
vegetative community types. Settings typically include temperature and the availability of both
water and light, and may provide a measure of biodiversity support potential in the face of
shifting temperature, precipitation, and disturbance regimes. If derived from current, readily
available geospatial data, surrogates enable estimation of biodiversity support potential at large
spatial scales (Kintsch and Urban, 2002). However, Ferrier (2002) suggests that surrogates must
be informed by biological inventories if they are to become ecologically meaningful measures of

biodiversity support.

These approaches are not without criticism. Araujo et al. (2001) maintains that environmental
diversity is generally a poor predictor of species diversity, though he notes that plant species do
exhibit consistent patterns of representation. The notion that environmental diversity provides a
useful surrogate stems from the assumption that species distributions are at equilibrium with
governing environmental factors. But, surrogates may ignore the significant roles that extinction,
speciation, dispersal barriers, and biotic interactions play in determining the biological diversity

of a site (Araujo et al., 2001). Further, biophysical proxies do not capture either disturbance or



land use history, each of which may be an important determinant of species composition and

diversity in many regions.

Despite these criticisms, there remains a critical need to identify and prioritize habitat for
conservation. While an individual species approach has been largely successful in protecting
endangered species, these efforts tend to be expensive and do not always provide tangible
benefits for the great majority of non-target, ecologically significant species. Accurate measures
of biodiversity are not currently available at the scales necessary for planning and implementing
conservation initiatives, and biodiversity surrogates probably constitute the most feasible method
for estimating the biodiversity support potential of habitats at scales relevant to the human
landscape. Surrogates that rely on unique habitat types and/or environmental settings will likely
offer the principal approach, especially if these measures are informed by biological inventories.
If combined with relevant landscape-scale metrics (connectivity, patch area and configuration,
etc.), biodiversity surrogates have the potential to more fully capture the buffering capacity of

habitat patches.

A review of the recently released state Wildlife Action Plans (Lerner et al., 2006) found that
forty-nine states are focusing on the conservation of particular habitat types as the primary
strategy for conserving priority species. Recent shifts in political support for climate change
action may also encourage the use environmental settings, which may provide a better measure
of biodiversity value under changing climate regimes. Toward that end, I seek to develop a
conservation planning tool capable of assessing the biodiversity support potential of habitat
patches across North Carolina. I use a suite of biodiversity surrogates, including both biophysical

proxies and land cover types, as potential measures of biodiversity support. The model is then



applied to a sample watershed to assess the ability of the tool to accurately predict regions of
high biodiversity value, and thus, whether surrogates may be effectively used to evaluate and
prioritize lands for conservation. The tool is part of a larger project to quantify and value a suite
of ecosystem services, including watershed protection, carbon sequestration, and
recreational/scenic value. The ultimate objective is to provide a conservation planning tool set
that overlays spatially explicit, valued services in the identification of conservation priorities.
Further, I seek to develop a tool that may be readily learned and applied by land conservation
organizations across the contiguous United States, reducing the need for specialized technical

training and planning support.

Methods
I began by exploring the geographic region used as a setting for model development and
application, and then outline how biophysical settings were generated and defined within the
model. As models rely heavily on the use of proxies, I field-tested the variability of modeled
settings to verify their use at landscape scales. I next examine the development of biodiversity
models, including the delineation of forest patches and the development of proxies for
biodiversity support potential. Particular attention is given to the components and creation of
biophysical proxies at large spatial scales. I next describe the process by which both biophysical
proxies and land cover types were used to estimate biodiversity support potential at the patch
level. Finally, I outline methods for evaluating the success of surrogates in capturing regions of
high biodiversity support and apply the procedure to a sample watershed to assess tool
performance. Verification relies on a comparison of tool outputs with the distribution of

Significant Natural Heritage Areas (or SNHAs), “an area of land or water identified by the



Natural Heritage Program as being important for conservation of the state’s biodiversity” (North

Carolina Natural Heritage Program, 2008).

Study Area

Biodiversity support tools were developed to function at ecoregional scales, as delineated by The
Nature Conservancy in 2000. Both the application of the model in generating patch-level
biodiversity support estimates and the validation of model accuracy necessitated the use of
smaller spatial scales. The Pigeon watershed in western North Carolina was selected for this
purpose (Figure 1). Falling completely within the Southern Blue Ridge ecoregion, the Pigeon
was chosen primarily because it is heavily forested and contains feasible sites for the field-based
portion of the study (e.g., eastern portion of Great Smoky Mountain National Park). The Pigeon
also contains a fairly high proportion of Significant Natural Heritage Areas, which were used as
a reference in validating estimates of biodiversity support potential. Alternative datasets, and
fine-scale soils data in particular, will also soon be available for the watershed. Though not
currently available for the entire country, soil characteristics are an important determinate of
plant community distribution and may be incorporated into future tool iterations to further refine

biophysical proxies.

Great Smoky Mountains National Park, located within the northwestern region of the Pigeon
along the North Carolina and Tennessee border, was selected for assessment of soil moisture
surrogates (Figure 1). The Park is nearly 525,000 acres in area, spans a wide elevation gradient
(from 875 to 6,643 feet), and receives between 55 and 85 inches of precipitation (valleys and
peaks, respectively) each year. The Park also supports a wide range of community types, from
low-elevation deciduous forests to the highly imperiled spruce-fir forests at higher elevations.

While resident ecosystems have been shaped by previous land use practices, and in particular, by



extensive logging prior to park establishment in 1934, they have been under legal protection for
nearly 75 years. Indeed, the Park has been noted for its concentration of rare species (primarily
plant and aquatic species) endemic to the Blue Ridge ecoregion, and was designated an
International Biosphere Reserve by the United Nations. Thus, the Park seems to provide a
contiguous, healthy suite of habitats suitable for estimating soil moisture gradients at landscape
scales. Logistically, it also houses one or more representatives of each unique environmental
setting identified by the biophysical surrogate tools, many of which may be readily accessed via
road and trail. Finally, nearly a third of the Park is located within the Pigeon watershed; with a
fairly large concentration of Significant Natural Heritage Areas, it provided an ideal proof of

concept for assessing the performance of biodiversity support tools.

Data Sources

A suite of publicly available GIS data layers were used in the development, application, and
validation of biodiversity support tools. Thirty-meter resolution digital elevation models (DEM),
available as part of the National Elevation Dataset (NED), were used to generate biophysical
proxies (including elevation, potential radiation load, and topographic convergence). Watershed
and stream catchment boundaries were obtained from the National Hydrography Dataset
(NHD+). Catchments, which represent stream reach contributing area and are typically between
1 and 10 km?, were used to delineate maximum patch size. Land cover types from the North
Carolina Gap Analysis Program (NC-GAP, 2008) were also used; the distribution and diversity
of plant community types are classified at thirty-meter resolution to the alliance level using
dominant species. I also obtained modeled species abundance and distributions from NC-GAP,
which uses known Element Occurrences (see below) and expert review to predict bird, mammal,

reptile, and amphibian ranges. While not publicly available, the North Carolina Natural Heritage
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Program provided Element Occurrence data; Element Occurrences, which are collected by
Natural Heritage Programs and are available for every state, describe the distribution of rare
species and community types across the landscape. Maps of Significant Natural Heritage Areas,

which were used in tool assessment, were also obtained from the NC Natural Heritage Program.

Components of Modeled Biophysical Settings

Gradient analysis has revealed that vegetation types vary as a function of unique environmental
conditions, and in particular, along temperature and moisture gradients (Stephenson, 1990;
McCune and Grace, 2002). Indeed, Whittaker (1956 & 1967) demonstrated that temperature and
plant-available moisture constitute the two most important factors controlling the distribution of
plant communities in the Great Smoky Mountains. Temperature, relative soil moisture, and
relative radiation loading were selected as the primary proxies for environmental heterogeneity;
these represent the most plant-relevant environmental factors in mountainous regions. These
conditions are captured using estimates of elevation, topographic convergence, and potential
solar radiation, respectively; it is important to note that these proxies provide estimates of
relative difference. To develop a simple index of local site conditions, I created a system for

classifying these conditions into ecologically meaningful ranges.

Elevation is an important determinant of both temperature and precipitation, with temperature
tending to decrease with increasing elevation and precipitation generally exhibiting the opposite
pattern (Urban, 2000). Because it plays so prominent a role in determining both temperature and
precipitation, elevation was divided into five distinct classes, each approximately 350 meters in
height. It is important to note that these effects may be more pronounced in regions of strong
orographic lifting. In regions with minimal topographic relief, such as North Carolina’s

Piedmont and Coastal Plain ecoregions, elevation would likely play a less significant role in
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controlling the distribution of plant species and communities. Thus, fewer classes would be
necessary or other, more plant-relevant variables (including geology or relevant soil

characteristics) might be used.

Topographic convergence, derived from estimates of slope and upslope contributing area,
measures the tendency of water to drain to or away from a point. It has been widely used by
hydrologists (Moore et al., 1990), but is increasingly used by plant ecologists to estimate relative
soil moisture across the landscape (Lookingbill and Urban, 2005; Urban et al., 2000 & 2002).
Using digital elevation models, topographic convergence was estimated for each cell in the DEM
as a function of both the upslope area contributing to flow accumulation (@) and local slope (b),

after Urban (2000):

Topographic Convergence = In [a / (tan b)] (D)

Topographic convergence was divided into three classes, with the two extremes characterized by
dry, divergent areas and moist, convergent areas; moisture estimates intermediate the extremes

were placed into a third soil moisture class.

The potential radiation load at a given elevation depends largely on the slope and aspect of the
land surface, and can be computed rather simply from terrain data (Pierce et al., 2005).
Intuitively, southwest-facing slopes tend to receive more radiation than northeast-facing slopes;
thus, they also tend to experience higher temperatures and higher evaporative demand. Potential
solar radiation was estimated by transforming aspect (see equation 2), as adapted by Lookingbill

and Urban (2005) from Beers et al. (1966):

Potential Solar Radiation = — cosine (Aspect - 45) 2)
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Potential solar radiation was divided into three classes, in which the two extremes delineate
warmer, southwest-facing slopes and cooler, northeast-facing slopes; potentials intermediate the

two extremes were placed into a third class.

Rather than applying evenly spaced class breaks, I instead used Element Occurrences to identify
more ecologically meaningful thresholds. While the spatial coverage of Element Occurrences is
relatively small relative to the scales considered here, they represent an important and widely
available empirical basis for making biophysical proxies more ecologically meaningful. Because
terrestrial plants are more likely to vary according to biophysical constraints than many wildlife
species, I limited our use of Element Occurrences to terrestrial and wetland plants and plant
communities. As Natural Heritage data are characterized by varying degrees of accuracy
regarding the spatial location of occurrences, I removed from subsequent analyses all
occurrences with an error greater than one kilometer. Remaining Element Occurrences were then
sampled for each of the three environmental variables. The process appends each occurrence
with the value of each biophysical variable at the corresponding sampling location. A natural
Jenk’s breaks classification (ArcGIS 9.3) was applied to divide the occurrences into the
appropriate number of classes and identify class thresholds for each of the three biophysical
variables. North Carolina is divided into three distinct ecoregions - the Coastal Plain, Piedmont,
and Southern Blue Ridge. To more accurately capture the unique and variable character of the

state’s ecoregions, thresholds for each biophysical variable were defined independently for each.

Having identified appropriate, ecologically meaningful thresholds and divided the three
biophysical variables into distinct classes, I next assigned each class a unique numerical code.

Elevation classes were assigned numbers from 1 to 5, while both topographic convergence and
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radiation assigned numbers between 1 and 3. Classes were subsequently combined algebraically
in order to create a simple, three-digit zip code that unambiguously indexes the environmental
conditions at any point on a landscape (Figure 2). Forty-five unique environmental zip codes

were generated according to the following equation:

Environmental Zip Code = (Elevation * 100) + (TCI * 10) + (Solar Radiation) 3)

Here, higher numbers represent higher elevation, higher radiation load, and greater soil moisture;
for example, a “531” would represent a moist high-elevation site on a shady, northeast-facing

cove, while a “113” would represent a low-elevation, relatively dry southwest-facing slope.

Verifying Model Components

The variability of environmental gradients remains difficult to assess at landscape scales
(Lookingbill and Urban, 2005). While the use of elevation and potential solar radiation as
proxies are widely accepted, topographic convergence remains somewhat uncertain. Soil
moisture is highly variable across both space and time, making it difficult to assess whether
topographic convergence accurately captures moisture gradients. Toward that end, I designed a
field study to assess whether topographic convergence provides an accurate surrogate for soil

moisture at landscape scales.

Field Assessment — In order to assess the accuracy of modeled topographic convergence, I
conducted ground measurements of soil moisture across a range of environmental gradients
within Great Smoky Mountain National Park during the summer of 2007. I sampled the three
unique topographic convergence classes across a range of elevation and potential radiation

conditions (see description of environmental zip codes, above) to establish relative differences in
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soil moisture. Assessing soil moisture does not necessitate sampling all possible combinations of
moisture, elevation, and potential radiation, however, so soil moisture classes were sampled
randomly across elevation and radiation gradients. Sampling locations were accessed on foot
with the aid of a portable GPS unit and compass, and three soil moisture readings were taken at

each location using a portable soil moisture probe.

Prior to field assessment, I applied a GIS-based decision-tree model to reduce potential sampling
area. Given the difficult nature of park terrain, all regions located further than 200 meters from
park roads and trails were excluded from analysis. Similarly, as sampling areas were to be
accessed on foot, regions located further than 10 miles away (a reasonable half-day walk) from
easily accessible park entrances were removed. Finally, zip code patches with an area less than
0.5 hectares were removed; small patches are more difficult to accurately locate in the field and
are more likely to be a remnant of estimation error. Even under these relatively strong constraints
on potential sampling area, at least one representative for 43 of the 45 total zip codes was found
within the feasible sampling area. The two outliers were found deep within the park’s interior

and were excluded from sampling efforts.

Having identified a reasonable set of potential sampling areas within the park, sampling design
was adjusted to incorporate an additional logistical limitation. Soil moisture is heavily dependant
on a number of factors, including time of day, the intensity and time since the last precipitation
event, terrain slope, soil type, etc., all of which make between-site comparisons challenging.
Sampling soil moisture at fixed reference plots across a diverse suite of locations enables
between-site comparisons by reducing these sources of error. Thus, reference stations were set

up at five, fairly evenly spaced access points around the perimeter of the park. To establish
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relative differences in soil moisture among the reference stations, all stations were sampled over
the course of a single morning on four consecutive, rainless days. The approach enabled
estimation of mean soil moisture, as well as the slope of the drawdown curve, within each
reference plot. Drawdown curves were fit to each reference station via regression analysis;
subsequent measurements at each reference station established where on the drawdown curve the
station was on a specific sampling day, and by extrapolation, the approximate soil moisture at

each of the other four reference stations.

There is also considerable change in soil moisture on a daily time-scale. Temperatures increase
and peak during the afternoon, and plant evapotranspiration begins to reduce soil water in the
late morning as temperature and radiation reach threshold levels. To reduce error introduced by
daily drawdown, soil moisture measurements were only collected between sunrise
(approximately 6:30 a.m.) and 11:00 a.m. each morning and reference stations were measured at
the start of each sampling day. Soil moisture measurements collected within the park were
compared with their respective reference station, which in turn enabled comparison with

moisture estimates collected at other reference stations (and sampling locations) through time.

Analyses — Analyses revealed that topographic convergence does accurately capture soil
moisture gradients at the landscape level. Moisture class one, representing areas with lowest soil
moisture, possessed a mean of 19.4 cm® water per m® soil (cm3/ m’). Moisture class two had a
mean of 23.3 cm3/ m® and moisture class three, representing areas of highest soil moisture,
possessed a mean of 27.0 cm’ / m’ . One-way analysis of variance revealed significant differences

among each of the three TCI classes (p=0.027, F.i=3.13); evaluation of between-group

differences was also significant for all class comparisons. Having verified the use of topographic
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convergence as an accurate proxy for soil moisture, I next consider the development and

application of biodiversity support tools.

Model Development and Application

Two distinct tool sets were developed to estimate the biodiversity support potential of terrestrial
habitats in North Carolina. The first uses the diversity of unique biophysical conditions, while
the second uses the diversity of land cover types (as classified by NC-GAP) across the landscape.
Unweighted and weighted metrics (using biological inventories from the North Carolina Natural
Heritage Program) were designed for each tool set, for a total of four different measures of
biodiversity support potential. Each tool generated a map of all habitat patches within an

ecoregion, ranked according to their relative biodiversity support potential.

Patch Delineation — In many regions, blocks of contiguous habitat can extend across areas so
large as to be effectively irrelevant to conservation and management. Much of western North
Carolina, for example, is heavily forested; when patch size remains unconstrained, the western
section of the state (within the Southern Blue Ridge ecoregion) falls into three vast blocks of
essentially contiguous forest. To make tools more directly usable, I chose to limit the spatial
scale of analysis by setting an upper limit on patch size. Size constraints were derived from
stream reach catchments as delineated by the National Hydrography Dataset. Catchments were
typically several hundred hectares in area, provided a more convenient spatial scale for analysis,
and enabled integration with the watershed evaluation tools also developed as part of the larger
study. As a proof of concept, I further limited analyses to regions of contiguous forest by

removing all non-forested habitats from the NC-GAP land cover maps.
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Estimating Biodiversity Support Potential — All points on the landscape were assigned a
unique environmental zip code; similarly, all pixels were assigned a unique land cover
classification according to the distribution of primary vegetative community types (NC-GAP).
The simplest measure of diversity is the total number or richness of zip codes or land cover
classes within a forest patch, which may be easily calculated within ArcGIS. The richness of zip
codes represents the diversity of unique environmental settings within a particular patch; land
cover richness measures the diversity of vegetative habitat types. Patches with a greater richness
score should possess greater environmental/habitat diversity, which in turn should support a
greater number of species over the long-term. While total richness is an important measure of
diversity, it is critical to account for the relative area of each zip code or cover class and provide
a diversity measure sensitive to dominance (e.g., when one zip code or cover class occupies a
disproportionate area of the patch). The Shannon Diversity Index, provided below, was used for

this purpose (Brower 1977).
H'=-Y p,*logp, )

Here, p, = % , where n; is the area of particular cover or zip code richness and A; is the total

area of the patch itself. Increased dominance of one or more cover or zip code classes reduces the
overall diversity score of that patch. Patches with low dominance have zip codes or land cover
classes with a fairly even area distribution and should possess a greater biodiversity support
potential than a patch with a similar richness score but a higher degree of dominance. The area-
weighted index cannot be used alone, however, because estimates of dominance vary according
to the number of classes. For example, a patch with three zip codes might receive a higher

biodiversity rank than another in which ten zip codes are present (where the three primary zip
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codes possess the same relative area, but in which the seven minor zip codes raise the dominance
score). Therefore, I averaged the richness and area-weighted diversities to create single metrics
for both environmental zip codes and land cover classes; each unweighted metric generates
single, patch-level estimates of biodiversity support potential, which may then be used to

compare the relative biodiversity support potential of patches across larger spatial scales.

It is also important to examine whether particular environmental settings or vegetative habitat
types tend to support greater species richness than others. Thus, Element Occurrences were used
to calculate the frequency with which rare and endangered species and communities are
associated within each zip code or land cover class. The frequency of Element Occurrences,
however, should be correlated with the area of each zip code or cover class, with larger areas
tending to capture a larger number of occurrences. To correct for this bias, I estimated the
density of Element Occurrences per unit zip code or cover class area. Each zip code or cover
class was subsequently reclassified according to estimated density of occurrences per unit area
(or pixel) associated with each. By assigning each pixel type a predicted number of Element
Occurrences, the total number of predicted Element Occurrences within each patch may be
estimated given the composition and area of the environmental settings or cover classes found
there. In other words, the procedure assigns a weight to each patch based on the estimated
capacity of each setting or cover type to support rare or endangered species or community types.
Patches with environmental settings or land covers containing a greater predicted Element
Occurrence density should possess a greater current biodiversity value; as above, these weighted

metrics may be used to compare biodiversity value among patches at larger scales (Figure 3).
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I also used modeled species richness developed by the North Carolina Gap Analysis Program to
weight both environmental zip codes and land cover types. Species distributions and richness,
derived from biophysical associations, Natural Heritage data, and expert opinion, have been
generated for an extensive suite of birds, mammals, reptiles, and amphibians. To weight each
land cover type or zip code, modeled richness for all species were aggregated to generate
estimates of total species richness. Land covers and zip codes were subsequently weighted
according to the total predicted species richness per unit area; densities were then used to
calculate patch-level estimates of biodiversity support potential. As subsequent accuracy
assessment revealed, using modeled species richness as a weighting factor does not seem to
accurately capture biodiversity value. Patch-level estimates remained largely uniform after
applying the weighting procedure, indicating that modeled richness does not vary significantly as
a function of either land cover class or biophysical setting. The approach was therefore discarded

and will not be considered further.

Model Validation

To assess the accuracy of the biodiversity tools, I generated watershed maps in which all forest
patches were ranked according to their biodiversity support potential. Having generated four
biodiversity metrics (weighted and unweighted zip code and land cover diversity), assessment
required four watershed maps. I then examined differences in the biodiversity support potential
of patches located within Significant Natural Heritage Areas (SNHAs) compared with a random
selection of patches from the Pigeon (see Figure 3, left, for example map). SNHAs should
identify regions with high biodiversity value; while they do not capture all biologically

significant areas, they represent a minimum reference area for comparison.
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Randomization Procedure — As data were not normally distributed, a non-parametric
randomization procedure (see below) was used to examine differences in mean biodiversity
support potential. Two random sample sets were taken initially, with 100 samples drawn with
replacement from patches located within SNHAs (for each biodiversity metric, separately).
Samples from each set were paired and the difference in biodiversity support between each
sample pair calculated for each of the 100 pairs; the average difference provides an estimate of
‘within-group’ (e.g., patches located within SNHAs) biodiversity support variability. Next, two
additional random, paired 100-sample sets were collected, the first from within-SNHA patches
and the second from all patches within the watershed. The average difference between each
sample pair provides an estimate of ‘between-group’ variation; the magnitude of ‘between-
group’ variation was then compared to ‘within-group’ variation. If patches within SNHAs have a
higher biodiversity support potential than patches drawn at random from the watershed, ‘within-
group’ variation should be consistently smaller. The procedure above was replicated 10,000
times; the frequency with which ‘within-group’ variation was smaller than ‘between-group’
variation was tallied and divided by the total number of replications to generate a probability.
This probability may be interpreted as a p-value; probabilities greater than 0.95 or 95% revealed
that the mean biodiversity support potential for patches within SNHAs was significantly different
than a random selection of patches. In cases where there was a significant difference, I examined
the mean biodiversity support potential for both patch classes to identify the greater of the two. I
also used the procedure outlined above to compare within-SNHA patches to those found outside

these designated regions.

It is important to note that patch area should be correlated with biodiversity support potential

(Ferrier, 2002), and analyses must account for this relationship. As a result of tool design, larger
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patches tend to house a greater number of unique land cover types and environmental settings
simply because they cover a more extensive area. Interestingly, while unweighted metrics are
highly correlated with patch area, weighted biodiversity metrics do not exhibit this relationship.
In order to reaffirm the independence of both metric types from patch area, analyses of both were
corrected for area-related effects. Toward that end, patches were divided into five unique area
classes using two distinct approaches in order to examine the effect of classification method
(Table 1). In the first, patches were separated into five area classes so that each contained
approximately the same number of patches, though each class did not necessarily cover the same
area range. In the second, a natural Jenk’s breaks classification (as specified in ArcGIS 9.3) was
used to generate five classes with approximately the same area range but an uneven number of
patches. The randomization procedure detailed above was applied within each area class
independently, largely removing area-related effects from the analysis. Because area classes still
cover a specific, albeit greatly reduced area range, these effects do generate a limited degree of
bias. Further, because the first approach generates five classes with significantly different area
ranges, the Jenk’s breaks method may be a more consistent method for removing area-related
effects. As the Jenk’s method is probably more appropriate, and because both classification

schemes generate fairly similar results, I limited examination of results to the Jenk’s method.

Tiered Procedure — 1t is useful to approach research questions from multiple avenues in order to
confirm trends. Thus, I also examined the proportion of within-SNHAs patches that occupy the
top tiers of the biodiversity support distribution. For example, of the nearly 1200 patches found
within the Pigeon watershed, the 60 patches with the highest biodiversity support potential would
represent the ‘best’ five percent of habitat patches. Of course, the identity of these patches will

likely shift depending on which metric is examined. Therefore, I calculated the proportion of best
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patches located within SNHAs, generating another measure of how well each of the biodiversity
support metrics captures SNHAs. In addition to looking at the best five percent of habitat patches
for each of the four metric types, I repeated the analysis for patches within the best 10, 25, and
50%. I also flipped the analysis and examined the ‘worst’ habitat patches — those patches falling
within the lowest 5, 10, 25, and 50% regarding estimated biodiversity support potential. It is
important to note that the number of forest patches within SNHAs (approximately one-third of
the total) is far less than the number of patches outside of these areas; results must be evaluated

with an awareness of this difference.

Results
Randomization Procedure — Analyses revealed that biodiversity support potential, as measured
by unweighted land cover diversity, was significantly less for patches within SNHAs relative to
those outside (Table 2 and Figure 4). This finding holds for all but the smallest area classes
(those smaller than 82.5 hectares in area), which did not show a significant difference.
Comparison of patches within SNHAs to a random selection of patches from across the
watershed did not reveal consistent trends, though findings suggest that unweighted land cover
diversity is generally less for within-SNHA patches. Assuming that biodiversity is effectively
captured by land cover diversity, these findings would suggest that SNHAs possess a reduced
diversity of species and/or communities. Land cover diversity also tended to increase with patch
area for all patch groupings, reaffirming the need to remove area-related biases from measures of
biodiversity support potential (Figure 4). Interestingly, the overall mean of unweighted land
cover diversity was greater for within-SNHA patches, which seems inconsistent with the findings
above. However, SNHAs contain a greater number of large, intact patches; larger patches tend to

have higher biodiversity support potential when unweighted metrics are used. Thus, while
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biodiversity support potential was greater for patches outside of SNHAs within each specific area
class, the trend was masked at more coarse scales of analysis by the fact that within-SNHA
patches are generally larger (mean of 150.5 hectares) than non-SNHA patches (mean of 65.9

hectares).

Weighting land cover diversity using Element Occurrences generates quite different suite of
findings. Patches within SNHAs have significantly greater biodiversity support potential than
those outside SNHAs for all area classes (Figure 5). Similarly, patches within SNHAs have higher
biodiversity support values relative to a random selection of patches; however, the degree of
significance diminishes with increasing patch area until differences are no longer significant for
the largest patch areas. The differential success of weighted and unweighted metrics suggests
that the use of biological inventories to weight surrogates is an effective method for
strengthening their ability to capture conservation value. While there is a noticeable area-related
affect on the magnitude of differences, weighted land cover diversity does not show the clear
correlation with patch area shown by unweighted metrics. This suggests that weighted metrics

may be more resistant to area-related biases.

Unweighted zip code diversity for within-SNHA patches was generally greater than for those
located outside, although these differences were not consistently significant except for patches
greater than 279 hectares in size (Figure 6). Similarly, patches within SNHAs had a higher
biodiversity support than patches drawn at random from the watershed; again, this only holds for
patches greater than 279 or less than 82.5 hectares in size. The figure again reveals that
biodiversity support potential increased with increasing patch area, confirming that unweighted

metrics were highly correlated with patch area. Findings for weighted zip code diversity were
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similar to those of weighted land cover diversity; for all area classes, biodiversity support
potential was significantly greater for within-SNHA patches compared with those outside (Figure
7). Similarly, patches within SNHAs had a higher biodiversity support relative to a random
selection of patches. Again, the degree of significance lessened with increasing patch area until
differences were no longer significant for the largest area class. As with the land cover
surrogates, weighted zip code diversity more accurately captured SNHAs (and thus, conservation
value) than did unweighted measures. Weighted zip code diversity and patch area were only

slightly correlated, again confirming that weighted metrics are less affected by patch area.

Tiered Procedure — The proportion of within-SNHA patches that occupy the top tiers of the
biodiversity support distribution were examined next For unweighted land cover diversity, only
between 31 and 41% of the best patches (from all categories) fell within SNHAs (Figure 8). This
proportion was approximately equal to the proportion of patches within SNHAs across the entire
watershed (at 34%), suggesting that patches outside SNHAs have an equal likelihood of having
high land cover diversity. These proportions were significantly lower than those derived for the
three other biodiversity support metrics for tiers within the top 25%. Examining patches with the
lowest support potentials (Figure 9), within-SNHA patches account for between 17 to 25% of the
total, which is similar to proportions observed for unweighted zip diversity but relatively high
compared with either of the weighted metrics. Thus, SNHA patches were spread out fairly evenly
across the distribution of land cover diversity estimates, reaffirming the relative ineffectiveness
of unweighted land cover diversity in identifying patches with high conservation value. With
weighted land cover diversity, on the other hand, between 85 and 60% of the best patches fell
within an SNHA, though the proportion fell consistently as lower quality patches were included

(Figure 8). The opposite trend was observed for low value patches, as the proportion increased
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from 2 to 10% as patch quality increased (Figure 9). The differences between unweighted and
weighted land cover diversity observed here again suggest that weighting biodiversity surrogates

improves their ability to identify lands with high conservation value.

Unweighted zip code diversity also performs fairly well, with proportions increasing from 50 to
85% as higher quality patches were included (Figure 8). Except for the best biodiversity support
class (top 5%), unweighted zip code diversity did not perform as well as either of the weighted
metrics. This also holds true for the lower tiers; between 18 and 25% of the worst patches fell
within an SNHA, trends that were fairly similar to those observed for unweighted land cover
diversity. Weighted zip code diversity performed almost as well as weighted land cover
diversity, with between 81 and 55% of patches falling within an SNHA (Figure 8). Again, the
proportion of capture fell consistently as lower quality patches were included in the analysis.
With between 7 and 20% of low quality patches falling within an SNHA, weighted zip code
diversity does not perform as well as weighted land cover diversity but consistently better than

either of the unweighted metrics (Figure 9).

Finally, the proportion of within-SNHA patches occupying the top tiers of the biodiversity
support distribution were examined when the three best biodiversity metrics (weighted land
cover diversity and both weighted and unweighted zip code diversity) were averaged to generate
a combined estimate of biodiversity support potential (Figure 8). Interestingly, this combined
biodiversity metric performed better than any of the individual metrics when examining the best
5 and 10% of patches. More specifically, 98 and 88% of the best patches are located within an
SNHA, respectively, compared with 83 and 85% for weighted land cover diversity (the most

effective individual metric). For the top 25 and 50% of patches, however, the combined measure
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performed less well than weighted land cover diversity, capturing 69 and 54% of the best patches
compared with 73 and 59% for weighted land cover diversity. The finding suggests that it may
be possible to aggregate biodiversity estimates to produce more robust measures of conservation

value.

Discussion
The study suggests that forest patches located outside of Significant Natural Heritage Areas tend
to possess higher land cover diversity, which contradicts what would be expected if land cover
diversity were an effective surrogate for biodiversity support potential. If SNHAs do represent
biodiverse regions, it appears that a greater number of land cover types will not necessarily
capture this potential. These findings confirm Ferrier’s (2002) assertion that the diversity of
remotely sensed land cover types, by itself, does not constitute an effective surrogate for
biodiversity. The success of weighted land cover diversity in capturing these regions suggests
that using biodiversity inventories to weight land cover surrogates does enable for the capture of
current biodiversity value. Land cover types clearly vary in the degree to which they support rare
and endangered species and communities, and should be weighted by species-level data if they
are to be effectively applied as surrogates in conservation planning initiatives. Although
weighted land cover diversity appears to be an effective surrogate, it is important to remember
that many places (especially outside of the United States) do not possess detailed estimates of

land cover.

Biophysical surrogates, on the other hand, may be used more widely. Unweighted zip code
diversity is also a more effective proxy for biodiversity support potential than unweighted land

cover diversity in regions where biological inventories are not available. Of course, its
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effectiveness is limited to patches of larger area. Weighting a biodiversity surrogate using
biological inventories increases its success in capturing regions of high biodiversity value, as
unique biophysical conditions similarly seem to vary in the degree to which they support rare
and endangered species and communities. Weighting environmental zip codes using Natural
Heritage data is an effective method of accounting for this variation. The usefulness of biological
inventories is fortunate, as Element Occurrences are collected by Natural Heritage programs
within every state and represent a broadly applicable, cost-effective approach. Biophysical
surrogates offer the added advantage of enabling a more flexible approach, potentially able to
better capture the factors most relevant to a particular ecoregion. For example, elevation is less
important than soil type and/or quality within North Carolina’s Piedmont and Coastal Plain
ecoregions. Incorporating appropriate soil characteristics (e.g., pH, % sand or clay, plasticity)
into a unique zip code scheme would enable capture of the environmental constraints most
relevant to resident plant species and communities, which could again be locally calibrated using

biological inventories.

Despite the relative success of biodiversity surrogates in capturing lands with high biodiversity
value, potential weaknesses in the assessment approach must also be considered. In particular,
we must consider whether biodiversity value, as represented by Significant Natural Heritage
Areas, also represents regions with high biodiversity support potential. Unweighted surrogates
themselves do not measure current biodiversity value, but instead represent the ability of a
habitat patch to buffer biodiversity; they capture the long-term resiliency of a forest patch and its
ability to support biodiversity through time. While I have thus far assumed that these two
measures are sufficiently similar to warrant direct comparison, results suggest that they may be

distinct. In particular, unweighted measures of zip code diversity seem to capture what I have
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termed biodiversity support potential. On the other hand, weighted measures (including both zip
code and land cover diversity) may represent measures of current biodiversity value. Indeed,
weighted measures were more effective than unweighted measures in capturing Significant
Natural Heritage Areas, designated for biodiversity value and not biodiversity support potential.
Interestingly, findings also suggest that combining these distinct metrics into a single measure
may provide a more powerful surrogate, capturing both biodiversity value and support potential.
Estimates of biodiversity support potential may also be combined with relevant landscape-scale
metrics (connectivity, patch area and configuration, etc.) to generate a more complete measure of

conservation value.

The study also relies heavily on the assumption that Significant Natural Heritage Areas have
higher biodiversity value than surrounding lands. SNHAs are designated in order to identify and
prioritize “high-quality or rare natural communities, rare species, and special animal habitats”
(North Carolina Natural Heritage Program, 2008). However, the designation of these regions
seems inherently biased, with many areas located within regions less impacted by human
activity. Examining the distribution of SNHAs within western North Carolina, for example,
reveals that many fall within already protected, publicly owned lands well removed from urban
development centers. Although SNHAs represent a more spatially contiguous set of habitats, it is
likely that these areas represent an incomplete coverage of lands with high biodiversity value.
Many other public lands have not been designated, despite already existing legal protection and
connectivity to adjacent protected lands. This suggests that, while Significant Natural Heritage
Areas were clearly designated with some consideration given to the current condition and habitat
connectedness, it is likely that their distribution is not limited by the legal status of lands; thus,

they do represent relative biodiversity value.
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Indeed, other regions with potentially high biodiversity value may have escaped designation; and
lands outside of SNHAs may or may not support high levels of biodiversity. While this
observation may be perceived as a shortcoming of the model validation approach, the possibility
of incomplete coverage actually speaks to the power of the model in capturing the areas that have
been identified. SNHAs provide an accurate, albeit spatially limited measure of biodiversity
value. While both weighted biodiversity metrics tend to effectively capture Significant Natural
Heritage Areas, the model also identifies many forested patches located outside of SNHAs as
having high biodiversity support potential (Figure 10). These lands have escaped designation but
may still possess high biodiversity value or support potential; thus, such lands represent

conservation priorities that should merit closer examination.

Unweighted environmental settings may also help identify opportunities for landscape-scale
restoration. Land use history and current ecosystem condition may have been factored into
decisions regarding the designation of Natural Heritage Areas. While some of these lands may
be currently degraded, restoration initiatives could successfully restore ecosystem function
within patches best able, due to their unique biophysical characteristics, to maintain and support
biological diversity in the long-term. Degraded patches with high biodiversity support potential
would then also represent regions of high restoration potential. While of less immediate concern
than the purchase of lands or land development rights, restoration will likely become a more

prominent conservation tool as land acquisition efforts become increasingly expensive.

Conclusions
Unique environmental settings and land cover types were effectively used to assess the

biological diversity of habitats at ecoregional scales. Although surrogate assessment suggests
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that biodiversity value (as estimated by weighted metrics) is distinct from biodiversity support
potential (as estimated by unweighted zip code diversity), both metrics are ecologically relevant
and should be incorporated into conservation planning initiatives. Both surrogate types can be
generated for the entire United States using existing, publicly available data. Further, surrogates
may be readily calibrated using Natural Heritage data; land cover diversity, in particular, must be
so weighted in order to accurately capture regions of high biodiversity value. Environmental
settings may also be adjusted to capture the most relevant characteristics of each ecoregion. The
effectiveness of these surrogates will likely improve, especially as additional data sets (including
fine-scale soils data and more widespread biological inventories) become nationally available.
Thus, it is likely that increased data sharing and cooperation will become an increasingly
important component of future conservation planning and implementation efforts. Prioritization
of land for conservation is steadily moving toward the inclusion and overlay of multiple
ecosystem services; this study demonstrates that biodiversity surrogates may be used to ground

these initiatives in biologically relevant priorities.
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Tables and Figures

Table 1: Classification of patches into five distinct area classes using two unique approaches.

Area Class Area (Ha) Patc;jf\:,sH \Z;thm Patcgj:\j Iz;lstsme T(I)Vtzin l:;t:h
_ag 1 0.1-5.0 39 198 237
Eg 2 5.0-18.9 45 196 241
z & 3 19.2 - 83.1 67 171 238
g0 4 83.5-179.6 117 123 240
= 5 180.5 - 699.6 144 95 239
g 1 0.1-823 150 562 712
E 2 82.5 - 166.7 107 112 219
© 3 169.9 - 278.9 82 71 153
= 4 279.5 - 432.7 55 33 88
= 5 444.6 - 699.6 18 5 23

Table 2: Comparisons between within-SNHA patches and two additional patch categories: a
random selection of patches from across the watershed (“Random”), and patches found outside
of SNHAs (“Outside”). Values represent relevant p-values for between patch comparisons, and

highlighted values identify statistically significant differences; red highlights where within-

SNHA patches have higher biodiversity support value, while blue highlights where within-SNHA
patches have lower values.

Land Cover Weighted Cover
Diversity Diversity Zip Code Diversity Weighted Zip Diversity
Area Class | Random | Outside | Random | Outside | Random | Outside Random Outside
1 0.58 0.60 1.00 1.00 0.99 0.93 1.00 0.99
2 0.95 1.00 0.99 1.00 0.91 0.93 1.00 1.00
3 0.90 1.00 0.99 1.00 0.80 0.84 0.99 1.00
4 0.98 1.00 0.98 1.00 0.96 1.00 0.98 1.00
5 0.65 1.00 0.94 1.00 1.00 1.00 0.91 1.00
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Figure 1: Above: North Carolina and its major hydrologic basins, including the Southern Blue
Ridge ecoregion and the Pigeon Watershed. Below: A more detailed view of the Pigeon and its
associated land cover types (derived from NC-GAP).
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Figure 2: Left: Environmental settings or ‘zip codes’ within the Pigeon Watershed, delineated
by the five elevation classes. Right: A detail of zip codes in and around a sample forest patch;
discrete zip codes are seen as fine gradations of color within each band.

37



Biodiversity
Support Potential
B o044

[ Jo44-058
[ Joss-067
[ o67-078
B os-1

Figure 3: Left: Biodiversity support potential, as measured by weighted zip code diversity, for
forest patches within the Pigeon Watershed. Right: Distribution of SNHAs, shown in yellow.
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Figure 4: Mean land cover diversity (and standard error) for all patches within the watershed,

patches within SNHAs, and patches outside SNHAS.
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Figure 5: Mean weighted land cover diversity (and standard error) for all patches within the

watershed, patches within SNHAs, and patches outside SNHAs.
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Figure 6: Mean zip code diversity (and standard error) for all patches within the watershed,
patches within SNHAs, and patches outside SNHAS.
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Figure 7: Mean weighted zip code diversity (and standard error) for all patches within the
watershed, patches within SNHAs, and patches outside SNHAs.
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Figure 8: Proportion of patches within SNHAs that occupy the top tiers of the biodiversity

support potential distribution.
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Figure 9: Proportion of patches within SNHAs that occupy the bottom tiers of the biodiversity
support potential distribution.
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Figure 10: Top 20% of patches, measured using the combined biodiversity support potential
metric (blue), set over SNHAs (yellow and lighter blue) to identify gaps in the existing network
of legally protected lands (darker blue).
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