

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Section 4 Landscape Assessment

"Geodesign"

INFORMATION TECHNOLOGIES

DESIGN PROFESSIONS

GEOGRAPHIC SCIENCES

THE PEOPLE OF THE PLACE

http://www.esri.com/products/arcgis-capabilities/geodesign/overview

Conservation planning

1-Introduction 2-Socioeconomics 3-Scale & Time 4-Land Cover 5-Land Use 6-Focal Species 7-Habitats: Terrestrial 8-Habitats: Marine/Aq 9-Habitat Cores 10-Connectivity

11-Viability Analysis 12-Optimization

<u>13-Climate Change</u> <u>14-Processes & Tools</u> <u>15-Summary</u>

Conservation Planning Shaping the Future

Edited by F. Lance Craighead and Charles L. Convis Jr.

http://www.conservationgis.org/publications/consplanningbook.html

Conservation Planning (Craighead)

- Think like a grizzly bear. (modeling ecology and behavior)
- How big is your world? (scale and conservation planning)
- Get the lay of the land. (land cover: the foundation for planning)
- Which animals represent the landscape? (focal species)
- Where is the best habitat on land (& in water)? (habitat analysis)
- Where are the best blocks of good habitat? (mapping habitat cores)
- Getting there from here. (corridor mapping/connectivity)
- How much is enough? (population viability/metapopulation analysis)
- What is the best of the best? (optimization, prioritization)
- Valuation of natural landscapes (biodiversity & ecosystem services)
- Changing landscapes (land use projections development/climate)

ENV 761 -- Landscape Assessment

Q: How do we select portions of a species habitat to protect when we simply can't protect it all?

A: Landscape prioritization...

Map created by ForestERA 1 April 2007, based on data developed October 2006, for the North-Central New Mexico Landscape Assessment.

Landscape Assessment

Western Mogollon Plateau Adaptive Landscape Assessment (WMPALA) Report

Pronghorn Antelope Distribution Model

 ForestERA
 Landscape-scale solutions

 Forest Ecosystem Restoration Analysis
 In the American Southwest

 Overview
 Tools
 Data and Maps
 Workshops
 Updates
 Search

home > data and maps > derived data > pronghorn habitat suitability

ForestERA Data Layer Overview - Pronghorn Habitat Suitability

http://www.forestera.nau.edu/WestMogPlateauLandscapeAssmt_AZ.html

Habitat and Habitat Patch maps

<u>Continuous</u>: Pronghorn habitat suitability (0.0-1.0)

<u>Binary</u>: Separates pixels into suitable and non-suitable classes

habitat cells are grouped and given a unique ID

Patch attributes

- Patch size, shape, and distribution
 - Area, compactness, core:area ratio
- Patch corridors and connectivity
 - Least cost paths; corridors; and effective proximity

- Patch sensitivity and proximity to threats/stresses
 - Mapping threat density and magnitude

COURSE PROJECTS

Hog Farm Analysis: Objective

Create a table of attributes for each hog farm complex that helps decide which would be the best for installing digesters.

- Environmental impacts (streams & estuaries)
- Health/social justice impacts (odor, air)
- Power source potential

Hog Farm Analysis: Task 1

- Read documents on W:/761_docs/HogFarms
 - Supplement with web search...
- Prepare for discussion on:
 - Indicators of <u>health</u> | <u>environmental</u> | <u>power</u>
 - Geospatial datasets relevant for above
 - Geospatial analyses for above

Solar Farm Analysis: Objective

- What are the potential ecological impacts of solar farm installations in southeastern NC
 - Fragmentation of natural landscape
 - Connectivity between habitat refuges
 - Other impacts?

- Compare landscape before current blitz to now
- Impacts of permitted solar farms
- Likely locations (and impacts) of future farms?

Solar Farm Analysis: Task 1

- Read materials on W:/761_docs/SolarFarms
 - Supplement with web search...
- Prepare for discussion on:
 - What specific ecological impacts might solar have
 - What data sets would be useful
 - What geospatial analyses would be useful

Date	Topic	Lecture	Lab Topic
9-Jan	Course Introduction	Course Introduction	Lab introduction/Best practices
14-Jan	Project Based GIS	Intro/Geospatial Data I	SL 1: Using ArcGIS Online
		Geospatial Data II	P1: Pipeline Assessment
21-Jan		MLK Day	no class
		Guest: Liz Kailes	
28-Jan		Communicating results	
	Ecohydrology/Terrain Analysis	Ecohydrology	P2: Sierra Costera Site Assessment
4-Feb		Terrain analysis	
		Riparian analysis	
11-Feb		NC Hog Farms (Vujic)	
	Habitat Modeling	Habitat modeling approaches	P3: Salamander habitat model
18-Feb		GeoWET habitat tool	
		GJAM (A. Schwantes)	
25-Feb		Model evaluation	
		Machine learning (K. Bradbury)	
4-Mar	Landscape analysis	Habitat patches & patch geometry	SL: Patch geometry (March 19)
		Wildife Road Xings (R. Sutherland)	
11-Mar		Spring break	no class
		Spring break	no class
18-Mar		Patch corridors & connectivity	SL: Patch connectivity(March 25)
		Course project discussion	
25-Ma r		Patch sensitivities/stresses	SL: Patch threats (April 1)
		Fuzzy Analysis	Project Check-ins
1-Apr	Conservation planning	Computing biodiversity	SL: Biodiversity (April 8)
		Prioritization & MARXAN	SL: Prioritization
8-Apr		Monitoring & Change detection	SL: Monitoring & change (April 15)
		Google Earth Engine	
15-Apr	Misc Topics	Network models	SL: Duke forest network analysis
		Course Recap	