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Habitat classification and modeling

* Habitat models underpin most of
natural resource management
* Wildlife management
* Conservation planning
* Assessing future scenarios (climatel)



the Hutchinsonian niche

Issues:
max overlap?
packing?
relevant axes?

env 2

env 1



Three interconnected models

Austin (2002, 2007):
* Ecological model
* What we expect, and why

* Data model
* What we measure, and why  «—GIS

* Statistical model
* How we "fit" ecology to data




Ecological models: scaling

* Fine scale: community ecology
* Ecology is about niche theory

* Landscape scale:

* Ecology is about area, edge, isolation, ...

* Larger scales: biogeography

* Ecology is about evolutionary history, ...



Data models: variables

* Field studies:
* Choose variables based on ecology

* Landscapes:

* Geospatial data in a GIS, especially
biophysical proxies (select variables
based on conceptual model)

* Beware spatial resolution!



Data models: coding
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Data spaces and translations

* Field data, map data are in
geographic space

* Statistics translate these into
parameter space

* Often, we will want to back-translate
the statistics into a map (the
locations are what's interesting)



Data spaces and translations

Geographical space Environmental space
y : e2
<>
X el

+ Observed species occurrence record

Actual distribution (left panel),/Occupied niche (right panel)

O Potential distribution (left panel)/Fundamental niche (right panel)
Pearson 2008



Statistical models: preamble

Caveats:

* Once the data are coded, the
statistics are blind to ecology

* The onus in on the investigator to put
the ecology back on completion, for
iInterpretation



Statistical models



Data models: observations

Kinds of locational observations:
1. Where you saw species X ("habitat")

2. Where you looked but didn't see it
("nonhabitat")

3. Where it might have occurred
("available habitat")

— All statistical models proceed from
some combination of these data



Statistical models: logic

* "Habitat" cf "nonhabitat” - are these 2
samples different on the predictors?

* "Habitat” cf "available habitat” - is this
sample different from a random draw
of what might have been observed?

* 1-sample “habitat” - show me all the
places that look like "habitat”



Generative models: “envelopes”

X2

x1

* Define limits in
terms of lower and
upper bounds (or
some arbitrary
confidence ellipse)

* Simple and easy!



Discriminative models: logic

X2

* Q: what function

habitat of X1 and X2 best
e o separates the 2
. groups?
o * A! provided by
° several alternative

, statistical methods
not habitat

x1



Models: tour guide

* There are multiple approaches to this
task—each represented by a few
techniques

* For each:
* What does it do?
* Advantages and disadvantages
* Current status (popularity)

* Relationships among techniques



X2

x1

Statistical models: (1) "envelopes”

* Define limits in
terms of lower and
upper bounds (or
some arbitrary
confidence ellipse)



Envelopes: summary

* Advantages:

* Simple (especially in GIS)

* Can use any data (or nonel)
* Disadvantages:

* Poor leverage statistically (presence only)
* Status:

* Common and popular
* Fancy extensions (ARP, DOMAIN, ...)



Envelopes:

X2

Mahalanobis D2

R
.
.

x1

* D? = (squared)
distance from
group centroid
(accounting for any
correlation among
the x's)

— How much does
this sample look
like “habitat"?



Envelopes: Mahalanobis D?

* Advantages:
* Requires only "habitat” data
* Can be "tuned"” to application

* Disadvantages:

* Requires ratio-scale data
* Hard to interpret variables

* Status:

* Resurgence in mapping applications
* The “classifier” in supervised methods



Statistical models: (2) DFA

Discriminant functions analysis

* Finds the best linear function of the
original (predictor) variables that
separates the 2 groups

* Maximizes among-group to within-group
variability on this function



DFA: logic

X2

‘0

x1

* DF 1 maximally
separates the
groups

* Note (here)
neither X1 nor X2
can separate the
groups by itself



DFA: interpretation

* DFA tests separation of the group means

* Correlations between DFs and original
variables provide for interpretation

* Classification is based on a (new) sample's
proximity to each group mean




DFA: summary

* Advantages:
* Does what we want!

* Disadvantages:
* assumes multi-normality
* the variables are ratio scale
* the functions are linear

* Status:
* new versions (robust, quadratic, flexible)



Statistical models: (3) GLMs

* Linear model:
*Y =b0 + blxl + b2x2 + ... + error

* Generalized linear model:
* U=b0+Dblxl +b2x2 + ... + error
* Y = link function of U

* Link function maps the linear term to
the distribution of the data



GLMs: Logistic regression

habitat 1
P
@) ® .."
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" nonhabitat habitat = 1; not = 0

x1



GLMs: Logistic regression

* Logit model:
P(habitat) = et/(1+ev)
where
u=f(x1, x2, ..)
SO

In[P(habitat)/P(not)] = u



GLMs: summary

* Advantages:
* Lots of distributions and link functions
* Can use mixed data types
* Can be "tuned" as a predictor
* Disadvantages:
* (it's still a regression)
* Status:
* the workhorse model



GLMs: extensions

Extensions to the basic GLM ...
* GAM.
* b's become smoothing functions

* GLMM, GEE (mixed models):
* Spatial structure (distributions) OK

* MARS
* Multivariate adaptive GLMs



GLM vs GAM

(a) GLM

(b) GAM
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e

Predictor 2

Y ~ poly(P1,2) + poly(P2,2

Predictor 1

AN

Predictor 2

Y ~s(P1,3) + s(P2,3)

1 0.3 LA

= -

A. Guisan, N.E. Zimmermann / Ecological Modelling 135 (2000) 147186




Statistical models: (4) CART

* Consider: "sugar pine is found at
middle elevations on mesic slopes;
also at lower elevations on NE slopes
of in pockets of deep soil, or at
higher elevations on SW slopes ..."

* Need a model that can handle
compensatory, substitutable settings:
a classification (or regression) tree



CART: logic
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CART: summary

* Advantages:

* Can handle complex complementary or
substitutable cases

* Can use any data types

* Provides intuitive decision tree
* Disadvantages:

* Over-fitting (unstable)
* Status:

* Extensions are popular



CART:. extensions

Extensions to CART:

* "Bagged” trees
* Resampled, then averaged
* "Boosted” trees
* Resampled and re-weighted; averaged

* Random forests

* Resampled observations & predictors;
averaged (1000's of trees)



Statistics: (5) Maximum entropy

* Goal: find a distribution function
that describes the data as closely as
possible (an "envelope” model)

* Theory: the function that does this
IS the one with maximum entropy
while also meeting specified
constraints



Maximum entropy: logic

Envelope model: Maxent model:

>
>

P(habitat)
P(habitat)




Maxent: estimation (cf GAM)

* Examples of maxent features:

piecewise "features” of the variables

(categorical, linear, quadratic,
threshold, hinges, interactions)
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Maxent: estimation (maxent)

° Estimation via maximum entropy:

* Fitted distribution (the "model”) should
be consistent with the data but not
assume anything beyond this

* Fit is fo minimize distributional
difference between the presences and
the background of what is available

* Solution is machine-learning



Maxent: interpretation

The maxent software package:
* Presence-only model (not really)
* A machine-learning solution

* A user-friendly interface (1)
* Optimize true positives vs area
* Tuning possible
* Rescaled to look like a GLM
* Lots of interpretative aids!



Models: connections

—» neural nets, etc

envelopes

\ /lchine learning

presence only

maxent

piecewise fit logistic scaling,
Tuning

GAMs <« GLMs




Statistics: Applications

X2

* Generative models

(envelopes, maxent) often
perform better than
discriminative models for
rare species

Models with flexible fits
(CART, maxent) often

perform better than global,
linear models



Statistical models: reminders

* In ecological applications, models
often perform very differently

* Try a few models and compare/average
* The statistical tools are blind to
ecology:

* Implications of assumptions often must
be accounted in model interpretation



