Habitat Classification and Species Distribution Modeling

Dean Urban Spring 2012

Habitat classification and modeling

- Habitat models underpin most of natural resource management
 - Wildlife management
 - Conservation planning
 - Assessing future scenarios (climate!)

the Hutchinsonian niche

Issues: max overlap? packing? relevant axes?

Three interconnected models

Austin (2002, 2007):

- Ecological model
 - What we expect, and why
- Data model
 - What we measure, and why
- Statistical model
 - How we "fit" ecology to data

← GIS

Ecological models: scaling

- Fine scale: community ecology
 - Ecology is about niche theory
- Landscape scale:
 - Ecology is about area, edge, isolation, ...
- Larger scales: biogeography
 - Ecology is about evolutionary history, ...

Data models: variables

- Field studies:
 - Choose variables based on ecology
- Landscapes:
 - Geospatial data in a GIS, especially biophysical proxies (select variables based on conceptual model)
 - Beware spatial resolution!

Data models: coding

Cols = variable	S
(Species = 0/1))

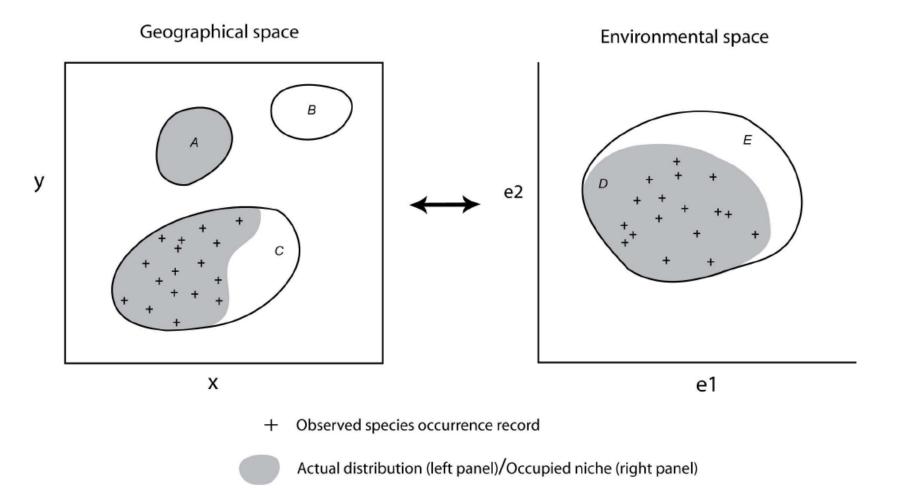
Rows = samples

													_ D
	🖻 🖬 🔒			· ·	v∩ + ⊂4 +			11 😽 😰	* 10	- B <u>I</u>	ī≣≣	≣ <u>Α</u> ・	
2	ت ا 🕏 🔁	រ SnagIt 🖺	Nindow	,	-								
		• =	_										
	A	<u> </u>	С	D	E	F	G	Н			К		М
		Sample	X	-	Elevation	Slope	Sun	SIpTAsp	TCI	AWC	pH	SOM	Depth
2	1	5	277140	3883680	969	16.72356	149	-7.33113	59	19.7	5.2	4.5	152.4
3	1	9	277260	3883680	972	22.11129	196	-20.9066	59	17.6	5.5	3	152.4
1	1	6	277200	3883590	932	18.45642	167	-12.5873	75	19.7	5.2	4.5	152.4
5	1	10	277260	3883560	929	20.828	194	-20.0212	65	19.7	5.2	4.5	152.4
3	1	7	277230	3883500	907	14.30291	168	-11.9954	81	19.7	5.2	4.5	152.4
7	1	3	277260	3883500	910	17.43931	182	-16.053	70	19.7	5.2	4.5	152.4
}	1	20	276240	3883470	1019	24.02984	180	-17.2856	57	19.7	5.2	4.5	152.4
3	1	1	276660	3883470	997	15.36952	153	-7.91589	74	17.6	5.5	3	152.4
0	1	2	276870	3883470	998	18.66144	113	1.95065	52	17.6	5.5	3	152.4
1	1	11	277440	3883470	944	21.19362	195	-20.2676	57	19.7	5.2	4.5	152.4
2	1	18	276240	3883440	1006	22.54033	170	-14.1851	61	19.7	5.2	4.5	152.4
3	1	25	276630	3883440	994	14.53876	124	-0.5074	73	18	5.2	10.5	165.1
4	1	32	277020	3883440	938	22.38417	90	7.287575	59	19.7	5.2	4.5	152.4
5	1	16	276060	3883410	1030	12.95884	126	-0.67821	61	19.7	5.2	4.5	152.4
6	1	28	276690	3883410	984	9.462322	151	-6.80663	87	19.7	5.2	4.5	152.4
7	1	33	277170	3883410	889	17.9598	152	-8.43162	75	17.6	5.5	3	152.4
8	1	31	277260	3883410	884	15.98069	171	-12.9287	81	19.7	5.2	4.5	152.4
9	1	39	277500	3883410	952	17.69631	188	-17.629	51	17.6	5.5	3	152.4
0	1	17	276150	3883380	1006	16.41644	104	4.524986	65	18	5.2	10.5	165.1
1	1	23	276390	3883380	992	20.09799	193	-19.501	60	19.7	5.2	4.5	152.4
2	1	22	276600	3883380	992	10.72416	121	0.934672	63	17.6	5.5	3	152.4
3	1	24	276390	3883350	983	18.41883	188	-17.9468	61	19.7	5.2	4.5	152.4
4	0	34	277050	3883350	904	25.65023	91	6.205355	61	19.7	5.2	4.5	152.4
5	0	37	277260	3883350	869	12.3342	170	-11.9678	93	19.7	5.2	4.5	152.4
6	0	15	275970	3883290	1027	16.03195	93	7.526546	72	18	5.2	10.5	165.1
7	0	30	276780	3883290	970	8.735691	154	-7.40829	70	19.7	5.2	4.5	152.4
8	0	35	277200	3883290	857	10.90502	141	-4.43547	95	17.6	5.5	3	152.4
9	0	41	277560	3883290	936	21.56378	199	-21.5506	57	19.7	5.2	4.5	152.4
0	0	43	277620	3883290	953	20.96671	198	-20.9635	51	19.7	5.2	4.5	152.4
◀	▶ ▶ \samp	le /						•					•
ead	dy											UM	

Data spaces and translations

- Field data, map data are in geographic space
- Statistics translate these into parameter space
- Often, we will want to back-translate the statistics into a map (the locations are what's interesting)

Data spaces and translations



Potential distribution (left panel)/Fundamental niche (right panel)

Pearson 2008

Statistical models: preamble

Caveats:

- Once the data are coded, the statistics are blind to ecology
- The onus in on the investigator to put the ecology back on completion, for interpretation

Statistical models

Data models: observations

Kinds of locational observations:

- 1. Where you saw species X ("habitat")
- Where you looked but didn't see it ("nonhabitat")
- 3. Where it *might* have occurred ("available habitat")
- \rightarrow All statistical models proceed from some combination of these data

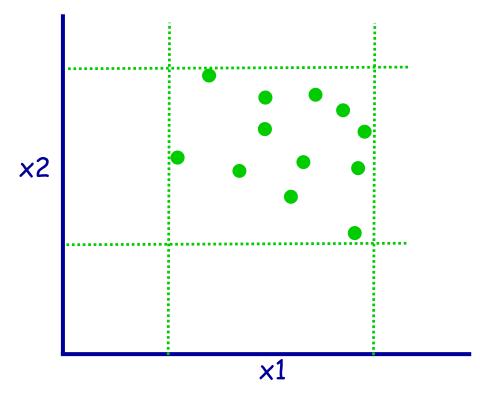
Statistical models: logic

• "Habitat" cf "nonhabitat" - are these 2 samples different on the predictors?

 "Habitat" cf "available habitat" - is this sample different from a random draw of what might have been observed?

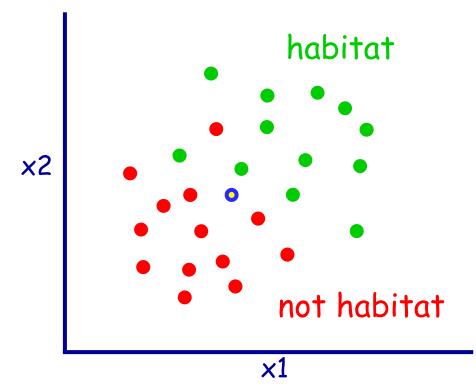
 1-sample "habitat" - show me all the places that *look* like "habitat"

Generative models: "envelopes"



- Define limits in terms of lower and upper bounds (or some arbitrary confidence ellipse)
- Simple and easy!

Discriminative models: logic

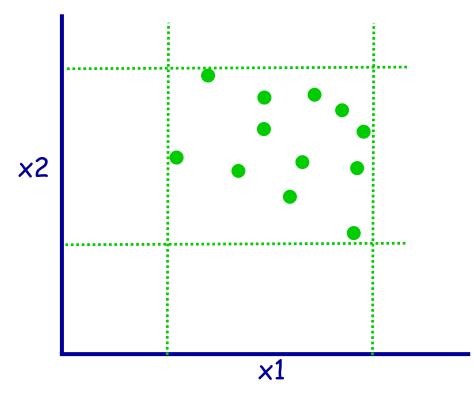


- Q: what function of X1 and X2 best separates the 2 groups?
- A: provided by several alternative statistical methods

Models: tour guide

- There are multiple approaches to this task—each represented by a few techniques
- For each:
 - What does it do?
 - Advantages and disadvantages
 - Current status (popularity)
- Relationships among techniques

Statistical models: (1) "envelopes"

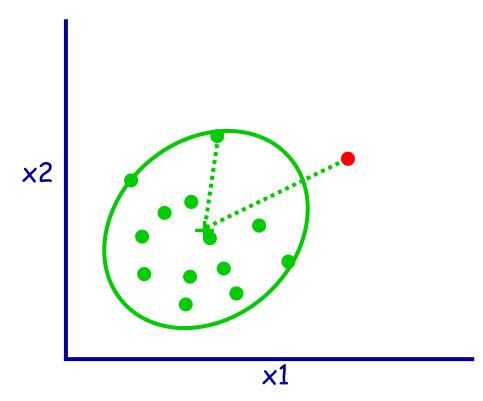


 Define limits in terms of lower and upper bounds (or some arbitrary confidence ellipse)

Envelopes: summary

- Advantages:
 - Simple (especially in GIS)
 - Can use any data (or none!)
- Disadvantages:
 - Poor leverage statistically (presence only)
- Status:
 - Common and popular
 - Fancy extensions (GARP, DOMAIN, ...)

Envelopes: Mahalanobis D²



- D² = (squared) distance from group centroid (accounting for any correlation among the x's)
- → How much does this sample look like "habitat"?

Envelopes: Mahalanobis D²

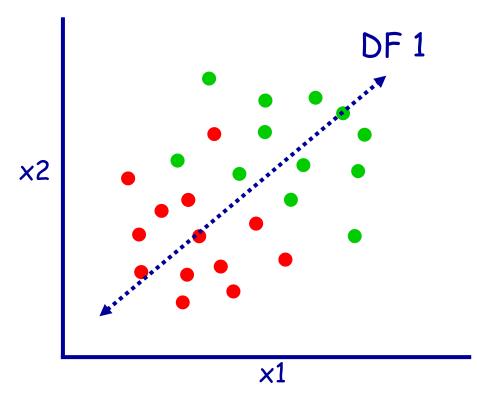
- Advantages:
 - Requires only "habitat" data
 - Can be "tuned" to application
- Disadvantages:
 - Requires ratio-scale data
 - Hard to interpret variables
- Status:
 - Resurgence in mapping applications
 - The "classifier" in supervised methods

Statistical models: (2) DFA

Discriminant functions analysis

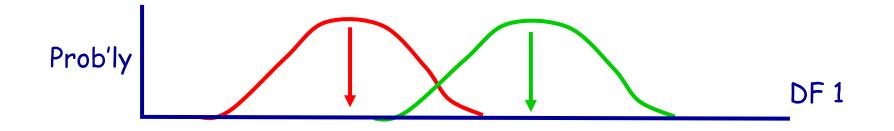
- Finds the best linear function of the original (predictor) variables that separates the 2 groups
- Maximizes among-group to within-group variability on this function

DFA: logic



- DF 1 maximally separates the groups
- Note (here) neither X1 nor X2 can separate the groups by itself

DFA: interpretation



- DFA tests separation of the group means
- Correlations between DFs and original variables provide for interpretation
- Classification is based on a (new) sample's proximity to each group mean

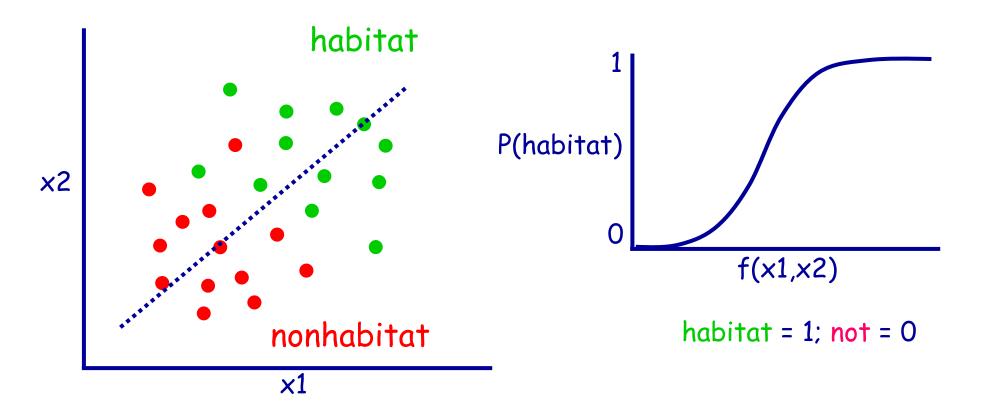
DFA: summary

- Advantages:
 - Does what we want!
- Disadvantages:
 - assumes multi-normality
 - the variables are ratio scale
 - the functions are linear
- Status:
 - new versions (robust, quadratic, flexible)

Statistical models: (3) GLMs

- Linear model:
 - Y = b0 + b1x1 + b2x2 + ... + error
- Generalized linear model:
 - U = b0 + b1x1 + b2x2 + ... + error
 - Y = link function of U
 - Link function maps the linear term to the distribution of the data

GLMs: Logistic regression



GLMs: Logistic regression

 Logit model: P(habitat) = e^u/(1+e^u) where

SO

ln[P(habitat)/P(not)] = u

GLMs: summary

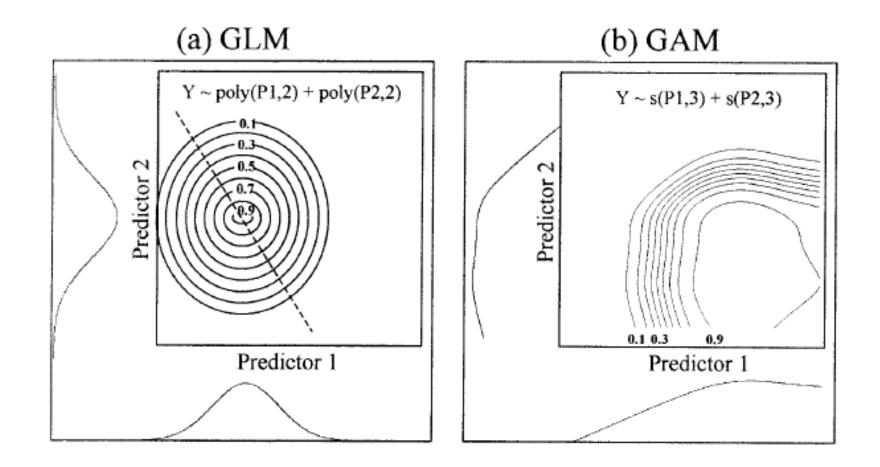
- Advantages:
 - Lots of distributions and link functions
 - Can use mixed data types
 - Can be "tuned" as a predictor
- Disadvantages:
 - (it's still a regression)
- Status:
 - the workhorse model

GLMs: extensions

Extensions to the basic GLM ...

- GAM:
 - b's become smoothing functions
- GLMM, GEE (mixed models):
 - Spatial structure (distributions) OK
- MARS
 - Multivariate adaptive GLMs

GLM vs GAM

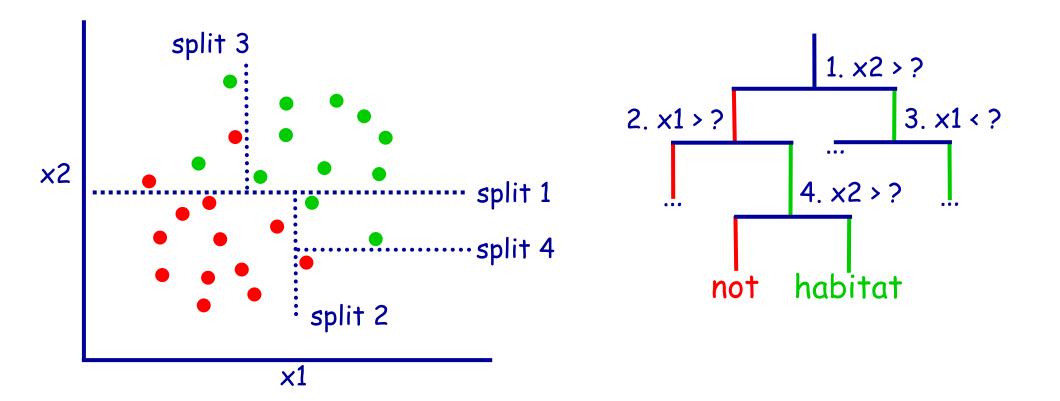


A. Guisan, N.E. Zimmermann / Ecological Modelling 135 (2000) 147–186

Statistical models: (4) CART

- Consider: "sugar pine is found at middle elevations on mesic slopes; also at lower elevations on NE slopes of in pockets of deep soil, or at higher elevations on SW slopes ..."
- Need a model that can handle compensatory, substitutable settings: a classification (or regression) tree

CART: logic



CART: summary

- Advantages:
 - Can handle complex complementary or substitutable cases
 - Can use any data types
 - Provides intuitive decision tree
- Disadvantages:
 - Over-fitting (unstable)
- Status:
 - Extensions are popular

CART: extensions

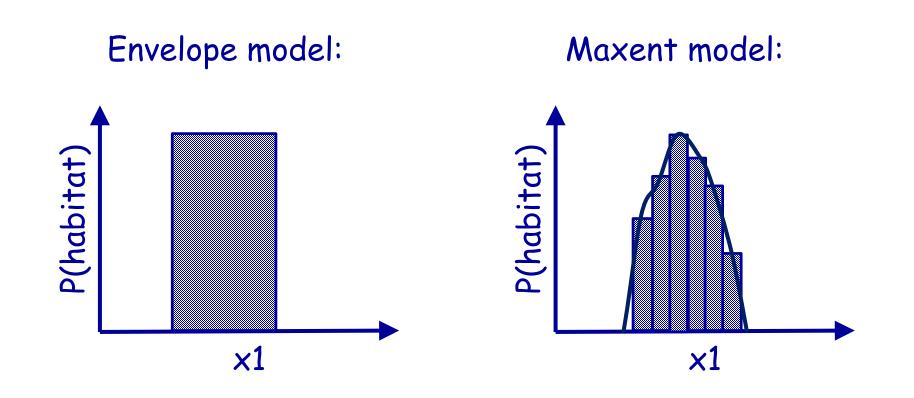
Extensions to CART:

- "Bagged" trees
 - Resampled, then averaged
- "Boosted" trees
 - Resampled and re-weighted; averaged
- Random forests
 - Resampled observations & predictors; averaged (1000's of trees)

Statistics: (5) Maximum entropy

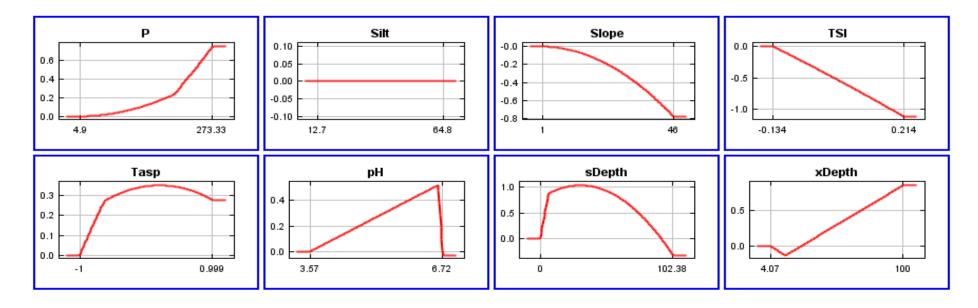
- Goal: find a distribution function that describes the data as closely as possible (an "envelope" model)
- Theory: the function that does this is the one with maximum entropy while also meeting specified constraints

Maximum entropy: logic



Maxent: estimation (cf GAM)

 Examples of maxent features: piecewise "features" of the variables (categorical, linear, quadratic, threshold, hinges, interactions)



Maxent: estimation (maxent)

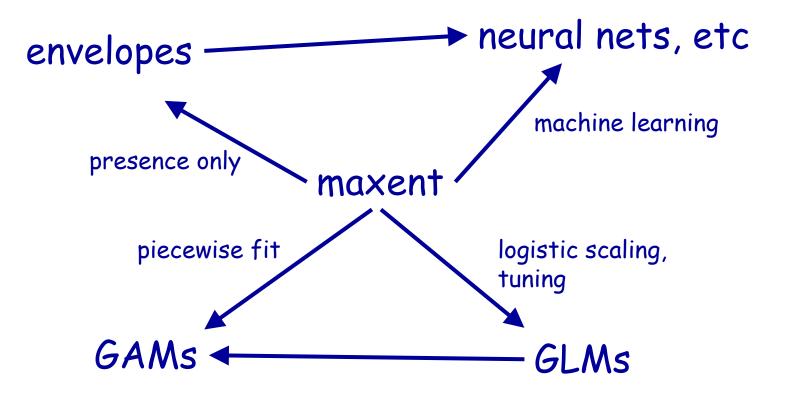
- Estimation via maximum entropy:
 - Fitted distribution (the "model") should be consistent with the data but not assume anything beyond this
 - Fit is to minimize distributional difference between the presences and the background of what is available
 - Solution is machine-learning

Maxent: interpretation

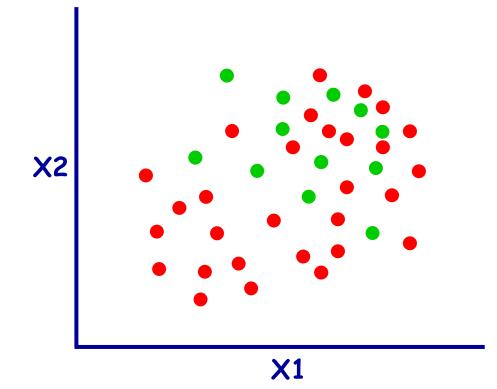
The maxent software package:

- Presence-only model (not really)
- A machine-learning solution
- A user-friendly interface (!)
 - Optimize true positives vs area
 - Tuning possible
 - Rescaled to look like a GLM
 - Lots of interpretative aids!

Models: connections



Statistics: Applications



- Generative models

 (envelopes, maxent) often
 perform better than
 discriminative models for
 rare species
- Models with flexible fits (CART, maxent) often perform better than global, linear models

Statistical models: reminders

- In ecological applications, models often perform very differently
 - Try a few models and compare/average
- The statistical tools are blind to ecology:
 - Implications of assumptions often must be accounted in model interpretation