

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Fuzzy Logic and GIS

Instructor: John Fay

Who in this picture is **tall**?

Who is **short**?

Who is **average**?

• Binary logic \rightarrow Output is 1 (true) or 0 (false)

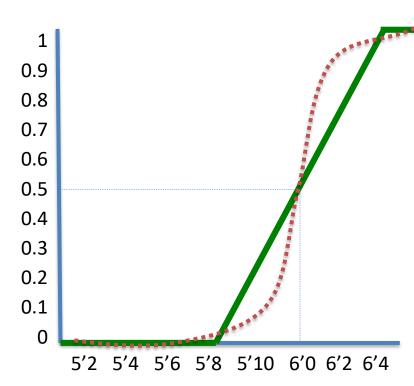
Tall > 6'

5'3" 5'2"	0
E'2"	
55	0
5'7"	0
5'8"	0
5'8"	0
5'8.5"	0
5'8.5"	0
5'10"	0
6'	0
6'2"	1
6'2"	1
6'2.5"	1
6'2.75"	1
6'4.5"	1
	5'8" 5'8.5" 5'8.5" 5'10" 6' 6'2" 6'2" 6'2.5" 6'2.75"

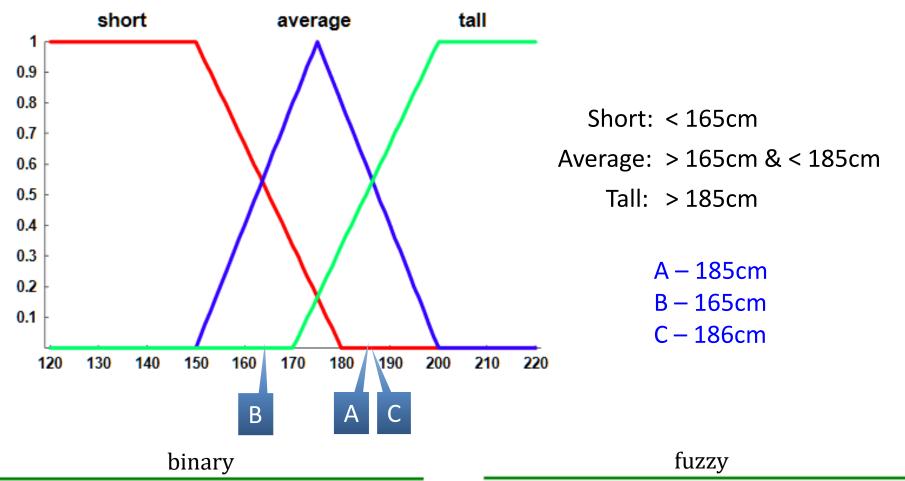
- Fuzzy logic is an alternative to binary logic.
- Outputs are not limited to the sets of 1 and 0.
 e.g. Tall or not tall
- Instead, it assigns *fuzzy* values based on <u>degree of</u> <u>membership</u> to the sets of 1 and 0...
 - e.g. 80% tall & 20% not tall
- Fuzzy values are assigned based on <u>fuzzy membership</u> <u>functions</u>...

- Sorites paradox:
- If I remove one sand grain from a pile, it's still a pile, but if I carry on, it's soon not a pile...

At what point is a pile no longer a pile?


Tall > 6'

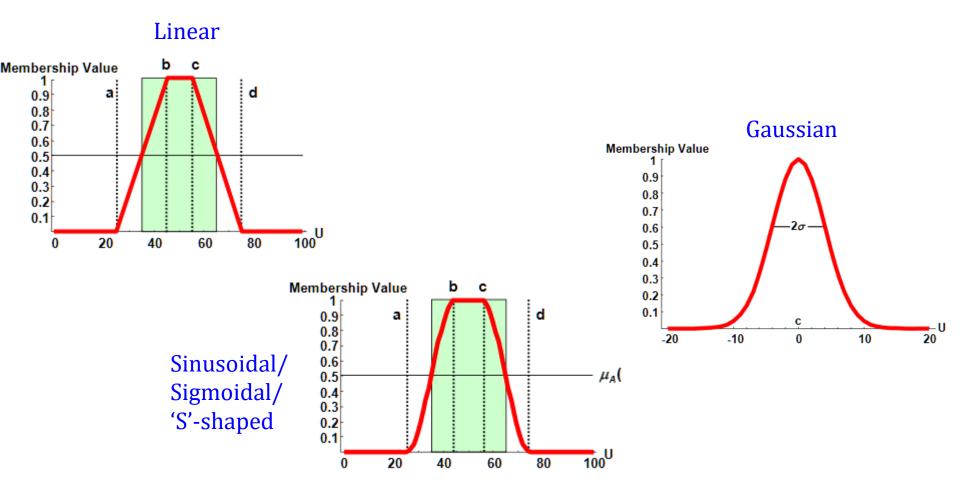
Name	Height	Tall (binary)	Tall (fuzzy)	
Natalie Portman	5'3"	0	0.00	7
Scarlett Johansson	5'3"	0	0.00	Definitely not ta
Haley Atwell	5'7"	0	0.00	
Mark Ruffalo	5'8"	0	0.20	
Cobie Smeulders	5'8"	0	0.20	
Robert Downy Jr.	5'8.5"	0	0.25	
Don Cheadle	5'8.5"	0	0.25	
Jeremy Renner	5'10"	0	0.30	
Chris Evans	6'	0	0.50	
Tom Hiddleston	6'2"	1	0.60	٦
Chris Pratt	6'2"	1	0.60	– Mostly tall
Samuel L. Jackson	6'2.5"	1	0.70	
Chris Hemsworth	6'2.75"	1	0.80	
Dave Bautista	6'4.5"	1	1.00	\rightarrow Definitely tall


How are fuzzy values calculated?

Answer: Membership functions

Name	Height	Tall (binary)	Tall (fuzzy)
Natalie Portman	5'3"	0	0.00
Scarlett Johansson	5'3"	0	0.00
Haley Atwell	5'7"	0	0.00
Mark Ruffalo	5'8"	0	0.20
Cobie Smeulders	5'8"	0	0.20
Robert Downy Jr.	5'8.5"	0	0.25
Don Cheadle	5'8.5"	0	0.25
Jeremy Renner	5'10"	0	0.30
Chris Evans	6'	0	0.50
Tom Hiddleston	6'2"	1	0.60
Chris Pratt	6'2"	1	0.60
Samuel L. Jackson	6'2.5"	1	0.70
Chris Hemsworth	6'2.75"	1	0.80
Dave Bautista	6'4.5"	1	1.00

Membership functions: multiple classes



	Short	Average	Tall
Α	0	1	0
В	1	0	0
С	0	0	1

	102	121 y	
	Short	Average	Tall
A	0.00	0.60	0.50
В	0.50	0.60	0.00
C	0.00	0.56	0.53

Fuzzy membership functions

Transform "crisp" values into values between 0 and 1, indicating strength of membership in a set...

Fuzzy inference

- In binary logic:
 - Premise 1: If x = A, then y = B
 - Premise 2: x is A
 - Conclusion: y is B
 - If grass is wet, it has rained.
 - The grass is wet, therefore it has rained.

Fuzzy inference

- In fuzzy logic:
 - Premise 1: If x = A, then y = B
 - Premise 2: x is A' (an acceptably likely member of A)
 - Conclusion: y is B' (an acceptably likely member of B)
 - If grass is <u>long</u>, I should mow.
 - The grass is fairly long, therefore maybe I'll mow
 - The grass is really long, I'd better mow right now!

Fuzzy inference: more conditions

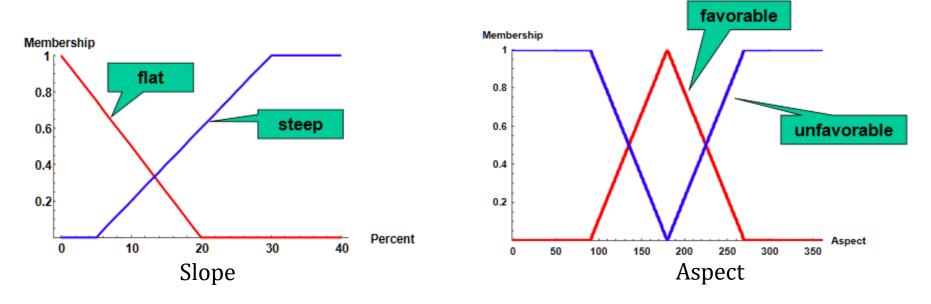
If <u>grass is long</u> and <u>it isn't too hot</u>, I should mow?

Rules:

- Grass is long, not too hot:
- Grass is not very long, not too hot:
- Grass is long, too hot:
- Grass is not very long, too hot:

I should mow now! I'll mow later. I may mow now. I'll mow later.

Another example...


Risk analysis based on degrees of risk ranging from 1 (low risk) to 4 (very high risk).

- If slope is flat & aspect is favorable, then risk is 1.
- If slope is steep & aspect is favorable, then risk is 2.
- If slope is **flat** & aspect is **unfavorable**, then risk is **1**.
- If slope is steep & aspect is unfavorable, then risk is 4.

http://homepage.univie.ac.at/wolfgang.kainz/Lehrveranstaltungen/ESRI_Fuzzy_Logic/File_2_Kainz_Text.pdf

Another example...

Fuzzy memberships:

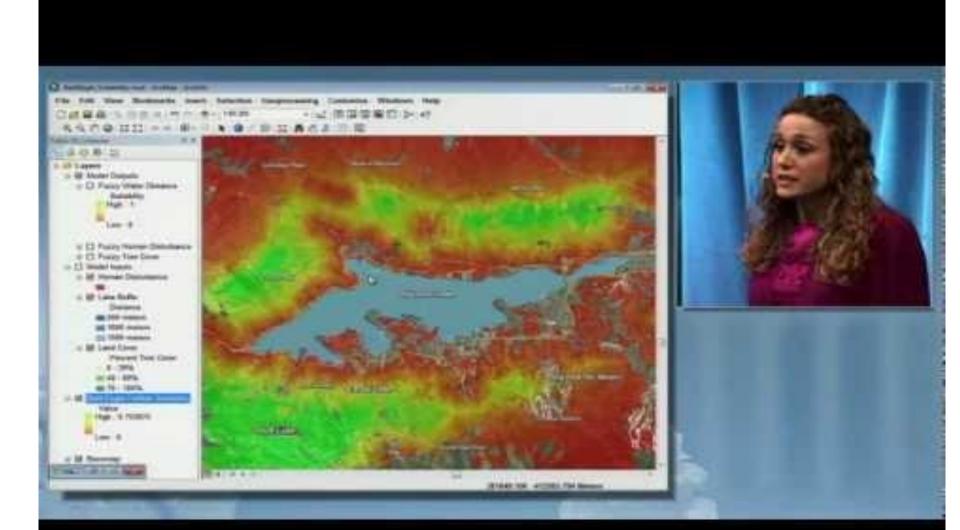
Slope of 10% and aspect of 180°

	Slope (s)	Aspect (a)
Rule1	0.5	1
Rule2	0.2	1
Rule3	0.5	0
Rule4	0.2	0

Computing overall scores..

- Compute the minimum score (conservative)
- "Conclusion" (or consequence) is risk * score

Rule 1...risk is **1**. Rule 2...risk is **2**. Rule 3...risk is **1**. Rule 4...risk is **4**.


	Slope (s)	Aspect (a)	Min(s,a)	Conclusions
Rule1	0.5	1	0.5	0.5
Rule2	0.2	1	0.2	0.4
Rule3	0.5	0	0	0
Rule4	0.2	0	0	0

For a slope of 10 percent and an aspect of 180 degrees we have the following results:

For the final result we get $c' = \frac{0.5 + 0.4 + 0 + 0}{0.5 + 0.2 + 0 + 0} = 1.29$, which means a low risk.

- Final result: divide Σ(conclusion) by Σ(min)
 - It's a weighted sum of the risk (1 thru 4 in this case)

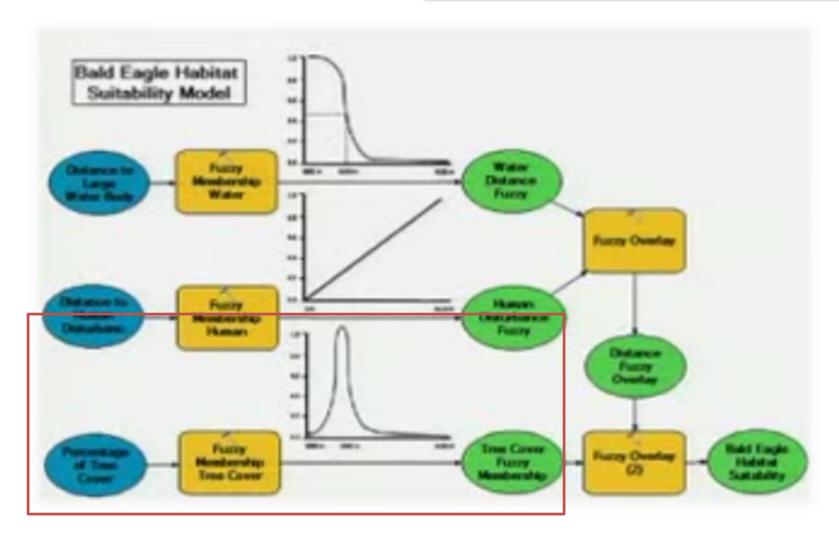
Fuzzy Analysis in ArcGIS

https://www.youtube.com/watch?v=Hd13H0X00LU

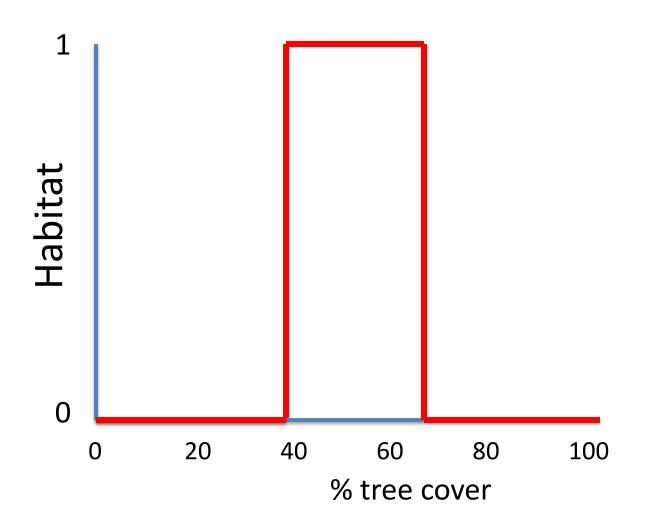
- Land cover
 - "Not too sparse and not too dense..."
 - Areas within 40 and 70% forest cover...
- Water
 - "Like to be *close* to water"
 - 500, 1000, 1500 m buffer...
- Human disturbance
 - "Far from from urban areas, roads, etc..."

Binary logic:

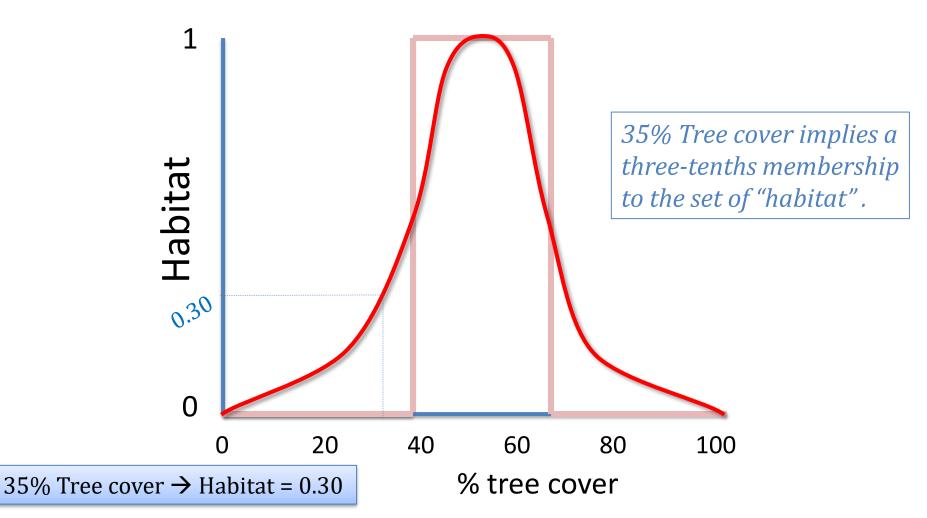
Habitat = 1 if:

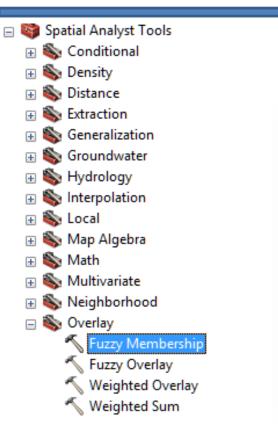

- > 40% forest
 &
- < 70% forest
 &
- < 1000 m of lake or river
 &
- > 1500 m from developed area

Otherwise, Habitat = 0


Resulting pixel values are either 1 or 0

Fuzzy logic:


Results are a continuum between 1 and 0


Binary logic - Forest:

Fuzzy logic - Forest:

Fuzzy membership functions - ArcMap

Output raster V:\Lab5_ThreatMapping_Fuzzy\Scratch\FuzDist Membership type (optional) MSSmall Large Near MSSmall MSLarge Linear NONE	ut raster iclidean Distance to Developed	
Membership type (optional) MSSmall Large Near MSSmall MSLarge Linear	put raster	
MSSmall ✓ Gaussian I Small I Large I Near I MSSmall I MSSmall I	Lab5_ThreatMapping_Fuzzy\Scra	atch\FuzDist
Gaussian Small Large Near MSSmall MSLarge Linear	mbership type (optional)	
Small Large Near MSSmall MSLarge Linear	SSmall 🗸 🗸	
Near MSSmall MSLarge		1
MSSmall MSLarge Linear		1
Linear		1

http://www.esri.com/news/arcuser/0410/fuzzy-logic-table2.pdf

Fuzzy membership functions - ArcMap

- Linear:
 - A linear increasing or decreasing membership between two inputs.

:ch\DevLinear5k
:ch\DevLinear5k
:ch\DevLinear5k
ch\DevLinear5k
5000
0

Fuzzy analysis – Pronghorn

- Criteria for unthreatened habitat:
 - Far from developed areas
 - Far from power lines
 - Few nearby roads
 - Mostly open land

Fuzzy analysis – Pronghorn

- Criteria
 - Far from developed areas
 - "Far": > 5000 m, with linear response
 - Far from power lines
 - "Far": > 6000 m, with sigmoidal response
 - Few nearby roads
 - "Few": < 3km per, sq. km with linear response</p>
 - Mostly open land cover
 - 60% to 90% herbaceous or scrub within 1km

Demo...

Conclusions

- Fuzzy analysis allows us to soften the impact of somewhat arbitrary cutoffs (e.g. 1km from roads).
- We can do a bit of fuzzy analysis (and did do this) by reclassifying continuous values (e.g. distance from roads) into non-binary classes.
- Alternatively, we can apply fuzzy membership functions, but what function to use involves a different set of assumptions.
- We still need to interpret how to combine the outputs (fuzzy overlay).
- In short, fuzzy analysis doesn't really solve our problem of involving subjective analysis; the subjectivity is just used elsewhere.
- However, fuzzy analysis offers new ways to break down these problems and use decision analysis techniques in our methods.