

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Course Wrap-up

Instructor: John Fay TAs: Emily Tucker & Isabel Hillman

Agenda

- Final project details
- Course Overview/Feedback
- Course Evaluations

- This is your opportunity to demonstrate that you can
- conduct an analysis involving some aspect of
- conservation GIS and effectively communicate its
- results.

Grading "rubric"...

Name: _____

Topic: _____

Presentation	Introduction	Methods	Results	Discussion
/15	/15	/25	/20	/20

Comments:

Final Project: Introduction

Define the "problem" (i.e. why do we care?)

Explicitly state your hypothesis or objectives

 Cite other studies that you are using as a guide or that recommend methods that you are using (this is one that students tend to overlook!)

Final Project: Materials & Methods

- Describe your study area
- What data were used? What software?
- Assumptions for the analysis...
- Why are these methods appropriate to your project?
- What general GIS analysis procedures did you use?
 - Explain as logical flow rather than listing the ArcMap tools used...
- What analytical techniques did you use?(e.g. summary stats) A flow chart may be helpful for multiple step projects

Final Project: *Results or observations*

- Present results
- (make sure they address your hypotheses and/or objectives)
- Summary statistics/table/graph
- Maps

no need to overwhelm with many maps; choose the most important variables to display and also try to combine multiple variables in one map to make a 'concise map'- first priority of course is clarity and ease of interpretation

Final Project: Discussion & conclusion

- Interpret your findings
- Were there any surprises?
- Any recommendations based on your results?
- Limitations of your methods/results.
- How do your findings compare to those examples you found in the literature?
- Briefly restate you major findings and why they are important and what areas of further research are needed.

Final Project

Your findings may not be what you expected or desired...

That's ok, but explain why not:

- Faulty logic/analysis?
- Bad data?
- And how you would succeed if given a second try:
 - Different analysis?
 - Different data?

Final Project

References

literature cited, both 'gray' and peer-reviewed

Acknowledgements

data, advice provided outside of this class

Appendices

e.g. for analysis portion of your project (not necessary for data maintenance steps such as importing or reprojecting) provide model snapshots

Citing software/data

Details are less important – consistency is...

ArcGIS:

ESRI 2019. ArcGIS Pro: Release 2.3.0. Redlands, CA: Environmental Systems Research Institute.

For spatial data, see:

http://library.queensu.ca/webdoc/maps/citation.htm

Final project

Disorganization makes the reader cranky

About 10-15 pages*, double spaced; < 2000-2500 words (*teams with more people = longer)

Flow chart, maps/figures, etc. should be on page at the end of the manuscript (don't fit into the document itself)

Be concise and professional in word selection

Final project

- Submit by 11:59pm, May 1st to receive full credit
 - Email me if you will miss that deadline

- Submit as a Word document or PDF
- Upload to Sakai (Assignments section)
 (One submission per team)

- COURSE OVERVIEW -

Date Topic	Lecture	Lab Topic
9-Jan Course Introduction	Course Introduction	Lab introduction/Best practices
14-Jan Project Based GIS	Intro/Geospatial Data I	SL 1: Using ArcGIS Online
	Geospatial Data II	P1: Pipeline Assessment
21-Jan	MLK Day	no class
	Guest: Liz Kailes	
28-Jan	Communicating results	
Ecohydrology/Terrain Ar	nalysis Ecohydrology	P2: Sierra Costera Site Assessment
4-Feb	Terrain analysis	
	Riparian analysis	
11-Feb	NC Hog Farms (Vujic)	
Habitat Modeling	Habitat modeling approaches	P3: Salamander habitat model
18-Feb	GeoWET habitat tool	
	GJAM (A. Schwantes)	
25-Feb	Model evaluation	
	Machine learning (K. Bradbury)	
4-Mar Landscape analysis	Habitat patches & patch geometry	SL: Patch geometry (March 19)
	Wildife Road Xings (R. Sutherland)	
11-Mar	Spring break	no class
	Spring break	no class
18-Mar	Patch corridors & connectivity	SL: Patch connectivity(March 25)
	Course project discussion	
25-Mar	Patch sensitivities/stresses	SL: Patch threats (April 1)
	Fuzzy Analysis	Project Check-ins
1-Apr Conservation planning	Computing biodiversity	SL: Biodiversity (April 8)
	Prioritization & MARXAN	
8-Apr	Prioritization & Portfolio (Dean U.)	SL: Prioritization(April 15)
	Monitoring & Change detection	
15-Apr Misc Topics	Course Recap	Projects

Project-based GIS

Ecohydrology/DEM based analysis

- Terrain based analysis
 - Exposure
 - Moisture
 - Insolation

• Hydrologic analysis

- Streams & runoff
- Watersheds

Species Distribution Modeling

Landscape Pattern Analysis

Ambotitafanana, Madagascar

Corridors & connectivity

Threat mapping

Weighted overlay threat maps

Biodiversity and Gap analysis

Ecoregional planning/site prioritization

Change detection & monitoring

Guest Speakers				
Liz Kalies	GIS Research at TNC, solar farms			
Tanja Vujic	Hog farms, biogas, and GIS			
Amanda Schwantes	GJAM – linking NEON species data with satellite data			
Kyle Bradbury	Machine learning and GIS			
Ron Sutherland	Connectivity in the South Atlantic ICC			
	Liz Kalies Tanja Vujic Amanda Schwantes Kyle Bradbury Ron Sutherland			

Feedback

feedback gradingproject Abitat modelingfinal examples TAs course structure pace review paper class portfolio pronghornguest speakers topics

Course Structure: Labs?

- 1. Project based GIS
- 2. DEM-based analyses *Riparian buffer analysis*
- 3. Species distribution modeling
- 4. Landscape geometry
- 5. Connectivity
- 6. Threat mapping
- 7. Biodiversity/Gap Analysis
- 8. Prioritization: Marxan
- 9. Change detection & monitoring
- Other topics not addressed?

Course Structure

What would you like more of?

What would you like less of?

- What should we do differently?
 - Topics
 - Lecture format
 - Lab format (pronghorn?)
 - Research paper?
 - Course project? vs final lab?

