
ENVIRON 761:
Prioritization, Optimization &
Conservation Area Selection

Instructor: John Fay

Choosing classes:

 Can't take them all…

 Select classes that favor criteria
 Topic (applicable or not-related)

 Interest (captivating or boring)

 Logistics (schedule conflicts)

 Requirements (GIS certificate?)

 What is the best combination of classes?
 Depends on your preferences, your options, your situation

How do you decide?

Choosing conservation sites:

 Can't protect them all…

 Select sites that favor criteria
 Geometry (core area, shape index)

 Threats (unthreatened, desperate for protection)

 Connectivity (betweenness centrality, corridor potential)

 Biodiversity (richness, rarity)

 Cost ($$$)

 What is the best portfolio of potential sites?
 Depends on mission, options, situation

How do you decide?

Prioritization & Reserve Design

General question…

How can we optimize the selection of
sites for protection to meet multiple

conservation objectives?

Multi-Attribute Decision Analysis

Methods for making decisions when:

 Outcome is uncertain

 Multiple [conflicting] objectives

 Multiple [conflicting] stakeholder interests

Approaches include:

 Articulating goals

 Expressing priorities among these goals

 Providing framework for communication

Maguire 2004

Multi-Attribute Decision Analysis

Probability models

Decision trees

Values models
Objectives hierarchy

Maguire 2004

http://www.boku.ac.at/mi/ahp/ahptutorial.pdf

Landscape Prioritization: Attributes

Patch/HUC
Biodiversity

Patch/HUC
Threat

Patch/HUC
Connectivity

Patch/HUC
Geometry

$

Landscape Prioritization: Sorting

Patch /HUC
Biodiversity

Patch/HUC
Threat

Patch/HUC
Connectivity

Patch/HUC
Geometry

$

Landscape Prioritization: Sorting

 Useful when objectives are clear and attributes
accurately reflect those objectives:

 Objective:
pronghorn viability

 Approach:
protect as much unthreatened habitat area as possible,
(given the budget of the program)

 Method:

 Sort by Area, then by Wtd. Threat

 Select patches until budget is spent

Landscape Prioritization: Sorting

 Sort on most important attribute

 Keep top X%..

 Determine cost cuts still required

 Sort on 2nd most important attribute

 Keep top X%...

 Determine cost cuts…

How much more important is
attribute 1 than 2, and so on??

NC Conservation Plan

http://portal.ncdenr.org/web/cpt/cpt-report

http://portal.ncdenr.org/web/cpt/cpt-report

NC Conservation Planning tool

Page 6 of Chapter 4:
Maximum Ranking Approach

Landscape Prioritization: Weighted Overlay

• Number of output
classes

• % influence of each input
• Development = 3x others

• Scale values
• Extreme impact = 5
• Minimal impact = 1

Landscape Prioritization: Weighted Overlay

Habitat
sub-patches

Patch area

Patch core area

Shape index

Mean distance to edge

weight

weight

weight

weight

Patch geometry
score

Σ = 100%

GeoHAT

Multi-attribute synthesis

Patch geometry
score

Patch
connectivity

score

Patch
vulnerability

score

Patch
biodiversity

score

weight

weight

weight

weight

Patch
score

Patch
efficiency

score

weight

Σ = 100%

GeoHAT

Selection algorithms: Greedy

 Sorting (on raw data or weighted
overlay data) is a purely greedy
approach:

 Searches for (via sorting) and takes the best X
number of patches until criteria is met

 It does not necessarily arrive at most parsimonious
solution!

Selection algorithms: Greedy

a c g1 a b c2

b d5 e fa c6

b c3

c f4

Pick #1: Site 6

Pick #2: Site 1 or 2

Pick #3: Site 1 or 2

Choose the richest remaining site…

Selection algorithms: Greedy Heuristic

a c g1 a b c2

b d5 e fa c6

b c3

c f4

Pick #1: Site 6

Pick #2: Site 5

Pick #3: Site 1

Choose the best remaining site
that complements chosen sites

Greedy heuristics …

Advantages:

 intuitive

 easy for small number of sites and targets (perhaps by
inspection)

Disadvantages:

 hard or slow for large number of sites or targets

 Have to examine each alternative; sequence matters…

 may not get the right answer (!)

Greedy heuristics …

Species A B C

shrike 1 1 1

owl 1 1 0

g. sparrow 1 0 1

hawk 1 1 0

thrasher 1 1 0

grouse 1 0 1

s. sparrow 1 1 0

pelican 1 1 0

eagle 0 0 1

tern 0 1 0

Total S 8 7 4

Optimal solution:
sites B & C

Greedy solution:
sites A, B, & C
(A first)

Selection Algorithms: Greedy

Greedy
“The top X patches are selected”

Each patch selection is made
independent of what is found in
other patches.

Selection Algorithms: Greedy Heuristic

Greedy
Heuristic

Heuristic = self learning

Patch selections are made to
complement existing patch
selections

Patch #194 complements patch
#81 better than patch #444 …

81 444 194
a b c d
x y z

a b d
x y

p q r s

Greedy heuristics & linear programming

 Integer programming and Integer goal programming:
Integer programming are linear programming techniques
derived from operations research that iterate through
possible combinations of variable until the optimal result
(as defined in the decision rules) is achieved.

 Pluses: Offers a comparable, optimal solution

 Minuses: can be very CPU intensive
and potentially impractical to employ

Linear programming, an example

Find optimal pipeline
configuration to line
coal-fired power
plants with carbon
sequestration sites…

• Where to start routes?

• Order of linking sites to
pipeline?

• Redundancy?

• New sites?

Selection Algorithms: Integer programming

Examine all unique combinations of planning
units and select the one combination that’s the
most parsimonious.

The top ranked planning unit may not be a part
of that; may lead to “local minimum”.

2144 or > 1043 unique combinations!!!

Solution: Simulated Annealing - a compromise to
finding the optimal combination of patches…

Maximum Covering Location Problems (MCLP):

"Find fewest facilities that cover the most demand"

The MCLP method substitutes the concept of species

representation for covered in the algorithm.

This integer program method

then converges on a single

solution that maximizes

representation for the number

of site (area) prescribed.

Operations Research

Marxan : Marine Optimization

http://www.uq.edu.au/marxan/

MARXAN / SPEXAN / SITES

Optimization programs designed

to be used for spatially

aggregating habitat patches for

optimal coverage.

MARXAN is the marine version

of this software, but has become

the standard for terrestrial

applications too…

http://www.uq.edu.au/marxan/

Marxan & "Simulated Annealing"

Uses "simulated annealing" to find an optimal
combination of planning units (patches) that meet a
specified objective function.

1. Begins with seed sites(random or set).

2. Randomly selects an additional site

3. Computes gain of adding that site towards objective
function

4. Adds the site to solution set if doing so exceeds a set
threshold.

5. The threshold gets higher as more sites are added

"Annealing"??

 From metallurgy…

http://www.pbs.org/wgbh/nova/samurai/

Simulated annealing

• iterative improvement

• random backward movement

• repetition

Aliens like low elevations...

Simulated annealing

 Advantages:

 finds a good answer

 can assess very large data sets

 can provide multiple solutions
(alternative, near-optimal)

 Disadvantages

 less intuitive, less accessible

http://www.sciencemag.org/content/309/5734/603.full.pdf

http://www.sciencemag.org/content/309/5734/603.full.pdf

Marxan

Purpose:

 To identify suites of planning units (i.e. HUCs) that
maximizes conservation goals with the least amount of
cost

Required inputs:

 List of conservation features to be included

 List of planning units (w/cost and other attributes)

 Cross-list of conservation features within each patch

 Specified conservation goal & other run time settings

Conservation Features file (spec.txt)

 Conservation features are features (e.g. species) you want
represented in your final portfolio of patches

 The conservation feature file includes the type and the desired
amount of each feature, as well as a penalty incurred if its not
adequately represented.

 id = feature identification number

 target = representation target (area, # occurrences)

 spf = species penalty factor

 name = feature name

id target spf name
5 10.2 10 Rocky_Mountain_Cliff_and_Canyon
9 0.4 10 Colorado_Plateau_Mixed_Bedrock_Canyon_and_Tableland
11 0.8 10 Inter-Mountain_Basins_Active_and_Stabilized_Dune
12 93.4 10 Inter-Mountain_Basins_Volcanic_Rock_and_Cinder_Land
14 123.2 10 Inter-Mountain_Basins_Playa

spec.txt

Conservation Features file (spec.txt)

 The Conservation Features file can be created manually by listing
the feature types and the target representation.

 Or, you can set the target to be a proportion of existing
conservation features within the planning area directly from the
raster or feature attribute tables…

Creating spec.txt file from GAP Cover types:

1. Extract GAP data found within patch areas

2. Calculate targets as a proportion of cell count (e.g. 30%)

3. Add penalty factors (or use constant values)

4. Convert table to text file
NOTE: Be sure to convert spaces and commas to underscores!

Planning Unit file (pu.txt)

 Planning units are the discrete land units making up the
conservation portfolio; a unit is either included or not.

 Can be a patch, parcel, catchment, hexagon, etc.

 The planning unit file is a list of list of each planning unit id,
the cost incurred by adding it to the portfolio, and a status
value indicating whether the unit/patch should be “locked
in” to (or out of) the solution.

 The cost can be in actual dollars
or be anything you want minimized
(e.g. opportunity cost)

id cost status
1 2 0
2 162 0
3 46 0
4 120 1
5 15 0
6 19 0
7 13 0

pu.txt

Planning Unit file (pu.txt)

 The planning unit file can be created directly from the
attribute table of the planning unit features….

 ID = feature ID

 Cost = a cost-related attribute

 Status can be altered manually or all set to ‘0’.

id cost status
1 2 0
2 162 0
3 46 0
4 120 1
5 15 0
6 19 0
7 13 0
8 158 0
9 34 1
10 198 0

Planning Unit v. Cons. Feature file (puvsp.txt)

 The planning unit vs. conservation feature file is simply a
cross listing of what species are found in which planning
unit - and how much.

 It can be created by spatially combining the planning unit
(i.e. patches) with the conservation feature (i.e. GAP cover)
datasets

amount pu species
1 1 34
13 1 36
10 1 67
82 2 36
129 2 67
33 2 76
151 2 34
3 2 71
124 3 67

puvsp.txt

Optional: Boundary Length Modifier (blm.txt)

 Used to determine how much emphasis should be placed
on minimizing the overall reserve system boundary length
(amount of edge)

 Consists of a list of shared edge between planning units.
Favoring two planning units that share an edge will reduce
the overall amount of edge in the final reserve design.

 By not including an attached planning unit, the amount of
boundary that would have
been included is added as a
cost…

id1 id2 boundary
1 2 20
1 3 0
1 4 10
2 3 3
2 4 7
3 5 3
4 5 9

Marxan inputs

id target spf name
5 10.2 1000 Rocky_Mountain_Cliff_and_Canyon
9 0.4 1000 Colorado_Plateau_Mixed_Bedrock_Canyon_and_Tableland
11 0.8 1000 Inter-Mountain_Basins_Active_and_Stabilized_Dune
12 93.4 1000 Inter-Mountain_Basins_Volcanic_Rock_and_Cinder_Land
14 123.2 1000 Inter-Mountain_Basins_Playa

id cost status
1 2 0
2 162 0
3 46 0
4 120 1
5 15 0
6 19 0
7 13 0

amount pu species
1 1 34
13 1 36
10 1 67
82 2 36
129 2 67
33 2 76
151 2 34
3 2 71
124 3 67

How are these "raw materials" used to find
"the optimal subset of patches" for a reserve?

puvsp.txt

pu.txt

spec.txt

id1 id2 boundary
1 2 20
1 3 0
1 4 10
2 3 3
2 4 7
3 5 3
4 5 9

bound.txt

MARXAN Objective functions

 The objective function is what gives one alternative
a "better" score than another.

MARXAN Run-time parameters: Inedit.exe

 Run-time parameters are held in the input.dat file
stored where the MARXAN.exe file is.

 Use Inedit.exe to modify/save settings:

 Number of repeat runs

 Annealing options:

 Number of iterations per run

 Threshold “cooling”

 Heuristics

 Location of inputs/outputs

Marxan run-time options

Repeat runs:

 Because the optimal solution is
not guaranteed, we run several
independent runs and
compare results.

Boundary modifier:

 Adjusts boundary costs to
match patch cost units

 High value favors compactness

Marxan run-time options

Run Options

 Enable simulated annealing

 Heuristic method to use

 Iterative improvement method

Simulated annealing options

 Iterations – at each iteration, a
planning unit is switched on (or off, if
already chosen) and the change is
evaluated via the objective function.

 Temperature decreases – the number
of temperature decreases to occur
across a set of iterations
 Higher value – T° declines faster. Marxan

seeks optimization more quickly, but
may get "stuck" in a local minima.

 Adaptive Annealing – initial
temperature and cooling rate are set
by sampling the input data

Marxan: # runs vs. # iterations?

 Increasing # runs will
 execute more searches "from scratch"

 explore more complete paths to an optimal solution

 Increasing # iterations will mean
 longer runs,

 a deeper search for the "optimal" solution

Run:
new game

Iteration:
moves ahead to think

Heuristics options

 Greedy:

 Rarity:

 Irreplaceability

Heuristics options: Greedy

Greedy: add planning units that
improve the objective function…

 Greedy Richness:

 Conservation value = the sum of penalties incurred by under-
representing a conservation feature; features already
represented do not contribute

 Pure Greedy:

 Same as Richness when BLM is set to zero; otherwise, boundary
length is factored into the objective function, and not all
species may be included because of cost restrictions

Heuristics options: Rarity

Greedy algorithms will favor common species;
Rarity algorithms implement an added cost for

not including rare conservation features

 Effective abundance = amount of feature found within a planning unit

 Rarity = fraction of planning unit in which feature is found

 Maximum rarity = planning unit assumes score of most rare feature

 Best rarity = planning unit assumes score of highest ratio for the
patch (not necessarily the most rare feature)

Heuristics options: Rarity (continued)

 Summed rarity = sum of all feature rarity scores w/in the planning
unit . Includes elements of both richness and rarity…

 Avg. rarity = average of all feature rarity scores w/in the planning
unit; gives more weight to rarer conservation features…

Heuristics options: Irreplaceability

Irreplaceability looks at how necessary a
patch is to achieving a given features' target

 A planning unit is irreplaceable if it contains a high proportion of the
target that's not found in other planning unit .

 Calculated as how much "excess" (or buffer) is captured within the
planning unit ; A planning unit that contains a mostly "buffer" or
"excess" is more "replaceable"; Scores range from 0 to 1.

 Product irreplaceability: Sensitive to outliers; will favor planning unit
with hard-to-represent features.

 Summed irreplaceability: Quantity of features is important; less
sensitive to outliers.

Heuristics options

 Greedy:

 Richness: Greedy strives to maximize
richness at low cost

 Pure Greedy: Cost (incl. boundary)
play a larger role

 Rarity:
 Outcome favors rare features; finds

them first, and then adds common

 Assigns values

 Irreplaceability
 Examines how necessary a patch is to

achieve a target for a given feature

Marxan run-time options: Inputs

 Specify input file names and
location

 Block definitions can be used
to set common properties to
groups of conservation
features (e.g. vertebrates,
listed species, etc.)

Marxan run-time options: Outputs

Specify output options & location

 See p. 66 of Marxan manual for
what these are

Proportion Threshold…

Run name..

Marxan run-time options: Cost Threshold

Used if you want to find a solution
below a threshold cost

Otherwise, Marxan will strive to find
the cheapest solution meeting all the
targets.

see p. 33 of Marxan Manual

Marxan run-time options: Misc.

 Starting Prop: Proportion of planning
units included in initial reserve.

 Random seed: If > 0, uses the same
initial patches to start.

 Allows minimum feature size;
features < minimum size are ignored.

 Marxan does not report "best"
scores until a min. level is reached,
thus saving time..

Running Marxan

 Double Click Marxan.exe file

MARXAN Outputs

 run1_sen.dat
Metadata file listing scenario run time parameters

 run1_best.dat
list of planning units included in the optimal solution from all repeat runs

 run1_mvbest.txt
a list of the conservation shortfalls contained in the optimal solution

 run1_ssoln.txt
a list of each planning unit and the number of times it occurred in the
optimal solution for a single repeat run

 run1_sum.txt
a list breaking down the conservatin value, costs, and overall score of each
repeat run

Viewing MARXAN’s “best” solution

 Convert patch raster to polygon features

 Rename “planning unit” to “pu” in txt file

 Join txt file to patch attribute table

 Display patches where “solution” = 1

Viewing MARXAN’s “summed solutions”

 Rename “planning unit” to “pu” in txt file

 Join txt file to patch attribute table

 Assign graduated symbology based on “number” attribute.

MARXAN: Parting thoughts

 Many additional options

 Read MARXAN manual!

 Hexagons, parcels, watersheds, etc. instead of
patches as planning units.

 Boundary length modifier

 Different cost measures, thresholds…

 Different conservation features…

