

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Monitoring & Change Detection

Instructor: John Fay

Monitoring & Change detection

Mind-Blowing Satellite Pictures Show How Cities Grow Over Time

Gus Lubin and Christine Jenkins | Mar. 3, 2011, 11:36 AM | ♠ 243,826 | ♥ 10

Cities are booming. Around the world and even in America, urban areas are expanding at rate never seen in history.

This incredible growth was pictured using time-lapse satellite photos by NASA.

We've collected pictures of boom cities including Dubai, Cairo, Las Vegas, Jakarta, Chengdu, Sacramento and Calgary.

Dubai in October 2002

https://earthengine.google.com/timelapse/

Time Lapse Satellite Photos Show How Humans Are Destroying The World

Christine Jenkins | Mar. 23, 2011, 1:14 PM | 🏟 397,769 | 🛡 42

in Share Stweet

+1

Email More

It takes a lot to provide for 7 billion humans.

Mankind is destroying rainforests, draining marshes and drilling into mountains to provide timber, water, coal and other resources.

Some of this destruction has been captured in before and after satellite photos.

Monitoring & Change Detection

Overview

- Monitoring: Remotely Sensed Data
- What is "Change detection"?
- Importance of measuring change
- How is change measured?
 - Data required...
 - Techniques used...

I. Monitoring with Remotely Sensed Data

- Generalities of Remote Sensing
- Remote sensing for environmental management

What is *remote sensing*?

"Obtaining information from an object without being in direct contact with it."

More specifically, "obtaining information from the land surface through sensors mounted on aerial or satellite platforms."

Describing remotely sensed products

Types of *resolution*:

- Spatial
- Spectral
- Radiometric
- Temporal

Spatial Resolution

Pixel size meters 1000

MODIS (Moderate Resolution Imaging Spectroradiometer)

60 Landsat MSS (Multi Spectral Scanner)

30 Landsat TM (Thematic Mapper)

25 SPOT (French, multispectral 25m)

- - IKONOS, GeoEye, 2–0.5 m

Hyper-spatial imagery < 1m

Center for Biodiversity & Conservation tool

Spectral Resolution

Spectral Resolution: *Hyperspectral*

Chopping up the spectrum into 100+ narrow bands

Spectral Resolution: *Hyperspectral*

Radiometric Resolution

The number of digital levels used to express the data collected by the sensor (often expressed in *bits*)

e.g. Landsat $\rightarrow 8$ bit

 $2^{8} = 256$ possible values (for each band)

Temporal Resolution

Revisit frequency for a specific location

- "High": < 24 hours 3 days</p>
- "Medium": 4 16 days
- "Low": > 16 days

Monitoring long term events

Viewing threats and stresses

Las Vegas urban expansion

1972

Monitoring short term events: Flooding

NC flooding 1999 RADARSAT-1 Imagery

Monitoring short term events: Wildfires

Species distribution modeling

Forestry

- Forest inventory
- Clear cut mapping
- Burn delineation
- Biomass estimation

Landsat 5 NASA

Forest structure

- Height
- Vertical distribution of canopy
- Wildlife use
- Good biomass estimates

Difficult to estimate from optical sensors...

http://terraweb.forestry.oregonstate.edu/amresults.htm

- Ecosystem modeling
 - Land cover
 - NDVI (Normalized Difference Vegetation Index)

APAR
LAI (reg
NPP (n

Input

- APAR (absorbed photosynthetically active radiation)
- LAI (regulates stomatal gas exchange)
- NPP (net primary production)
- Standing biomass (carbon storage)

Global terrestrial net primary production (NPP) over 110 million square kilometers for 2002, computed from MODIS (Moderate Resolution Imaging Spectroradiometer) data.

https://cao.carnegiescience.edu/

II. Change Detection & GIS

- What is change detection
- Methods for detecting change
- Lab Exercise...

What is change detection?

Identifying and quantifying changes in spatial features...

What is change detection?

Also, categorizing change (e.g., of land cover)

	Land cover/use in 2007								
Land cover/use in 1982	Cropland	CRP land	Pastureland	Rangeland	Forest land	Other rural land	Developed land	Water areas & Federal land	1982 total
Cropland	326,196.4	30,168.6	30,344.7	6,895.4	8,922.7	4,136.4	11,117.5	1,765.2	419,546.9
	±2,675.3		±1,148.8	±1,025.2	±617.8	±428.5	±403.8		±2,441.3
CRP land									
Pastureland	18,526.6	1,351.6	78,372.2	5,085.3	17,760.5	2,036.1	6,845.0	919.0	130,896.3
	±1,055.1		±2,050.0	±943.5	±1,039.9	±384.5	±338.0		±1,493.8
Rangeland	7,430.8	1,124.5	3,369.1	391,615.0	3,379.4	2,272.5	5,201.0	3,507.2	417,899.5
	±1,292.5		±719.4	±3,681.9	±802.1	±565.5	±544.1		±3,741.7
Forest land	2,121.7	144.4	4,847.6	2,175.6	371,660.4	2,229.1	17,083.5	3,117.3	403,379.6
	±328.4		±841.7	±970.1	±2,942.2	±464.3	±417.1		±2,731.8
Other rural	1,685.2	56.4	1,159.0	915.5	3,310.2	38,734.9	1,077.8	304.1	47,243.1
land	±231.3		±265.6	±422.1	±372.2	±1,262.4	±110.2		±1,308.6
Developed	264.1	0.0	163.7	176.6	442.6	18.4	69,896.9	1.8	70,964.1
land	±22.3		±19.1	±22.9	±27.7	±6.9	±783.7		±779.7
Water areas & Federal land	798.7 	4.7	359.4 	2,256.0 	934.6 	212.2	29.5 	443,139.6 	447,734.7
2007 total	357,023.5	32,850.2	118,615.7	409,119.4	406,410.4	49,639.6	111,251.2	452,754.2	1,937,664.2
	±2,688.7		±2,347.0	±3,992.9	±3,065.4	±1,359.1	±1,499.4		±163.8

Summary Report 2007 National Resources Inventory December 2009

Change detection & environmental mgmt.

2003

Riparian dynamics

Brazilian Amazon meandering river and oxbow lakes

Human footprints

Peruvian Amazon, Swenson et al. 2011

Change detection & environmental mgmt.

Are protected areas being protected?

March 22, 2004

Change detection & environmental mgmt.

CO₂ offsets: Additionality calculations...

Reforestation Afforestation Project Carbon On-Line Estimator								
Velcome to the I The Reforestation/Aff an afforestation proj converting cropland a gross carbon offset) released elsewhere a With this tool, net off and must be estimat the gross offsets ha calculation you wish t	Reforestation/Afforestation Project Ca iorestation Project Carbon On-line Estimator allow ject in the United States. For the purposes of and/or pasture to forest. The net offset is equiv , less the amount of carbon estimated to have t as a result of this project occurring (leakage dedu fsets can be estimated for both (1) proposed ref red from existing carbon stock accumulation tabl ave been measured or verified (post-project m to execute.	arbon On-Line Estimator (RAPCOE) we you to estimate the net carbon offset produced by a reforestation this tool, reforestation and afforestion are the same activity, the valent to the amount of carbon sequestered by the conversion to for been sequestered had no project occurred (baseline), and less any uction). forestation/afforestation projects, for which gross offsets are not kr les (pre-project planning) and (2) projects already underway w nonitoring). Click the appropriate tab below to choose the net of	Project Status Reset on or at of orest CO2 Project location: CO2 State: County: County: MLRA: Baseline afforestation rates: Project Status - From cropland: - From pasture: -					
	Pre-project planning tool	Post-project monitoring tool	Leakage rate: 					
	Click to estimate net offsets for a planned project.	Click to estimate net offsets for an existing project with known gross carbon	Cropland: - Pasture -					

How to detect change?

- Data:
 - Two or more snapshots in time...

Techniques:

Identify difference in these snapshots...

Simple, right?

Well, perhaps not ...

Detecting change: Data

Remotely sensed imagery:

NLCD 2001

NLCD 2006

Detecting change: Data

- Data should be acquired:
 - On anniversary dates
 - At the same time of day
 - Same sensor
 - Same bands & resolution
- Images should be:
 - Precisely registered
 - Correctly calibrated (radiometrically corrected)

Detecting change: Data

1992, 2001, 2006, 2011

NLCD 1992 Land Cover Classification Legend

NLCD classifications

NLCD Land Cover Classification Legend

	11 Open Water
	12 Perennial Ice/ Snow
	21 Developed, Open Space
	22 Developed, Low Intensity
	23 Developed, Medium Intensity
	24 Developed, High Intensity
	31 Barren Land (Rock/Sand/Clay)
	41 Deciduous Forest
	42 Evergreen Forest
	43 Mixed Forest
	51 Dwarf Scrub*
	52 Shrub/Scrub
	71 Grassland/Herbaceous
	72 Sedge/Herbaceous*
	73 Lichens*
	74 Moss*
	81 Pasture/Hay
	82 Cultivated Crops
	90 Woody Wetlands
	95 Emergent Herbaceous Wetlands

http://www.epa.gov/mrlc/change.html

NLCD Change (NLCD 1992 versus NLCD 2001)

Direct, pixel-to-pixel comparison of NLCD 1992 and NLCD 2001 land cover is not recommended for several reasons: 1) NLCD 1992 was based on an unsupervised classification algorithm, whereas NLCD 2001 was based on a supervised classification and regression tree algorithm; 2) terrain corrections were based digital elevation models (DEM) with a 90-meter spatial resolution for NLCD 1992, whereas terrain correction for NLCD 2001 used 30-meter DEMs; 3) the impervious surface mapping that is part of NLCD 2001 resulted in the identification of many more roads than could be identified in NLCD 1992, however, most of these roads were present in 1992; 4) NLCD 2001 imagery was corrected for atmospheric effects prior to classification, whereas NLCD 1992 imagery was not, and; 5) there are subtle differences between the NLCD 1992 and NLCD 2001 land-cover legends. These factors result in substantially different pixel-by-pixel labeling in the two dataset, much of which is probably not genuine land-cover change, as shown in the pictures below.

Direct, pixel-to-pixel comparison of NLCD 1992 and NLCD 2001 land cover is not recommended

1992	2001, 2006, 2011
Unsupervised	Supervised
90 m DEMs	30 m DEMs
No atmospheric correction	Atmospherically corrected
Fewer features identified	More feature identified

NLCD 1992/2001 Retrofit Land Cover Change Product

Figure 1. Generalized processing flow for the National Land Cover Database (NLCD)-Land Cover Change Retrofit (LCCR) product. The blue and red flow lines indicate additional use of the intermediate product in a later process step.

NLCD 1992/2001 Retrofit Land Cover Change Product

http://www.mrlc.gov/nlcdrlc.php

Table 2. National Land Cover Database Land Cover Change Retrofit (NLCD-LCCR) "from-to" class code matrix. The first number in the code is the 1992 "from" retrofit land cover class code and the second number in the code is the 2001 "to" retrofit land cover class code. (More detail regarding NLCD-LCCR change class codes is available from the Multi-Resolution Land Characteristics (MRLC) Consortium at: http://www.mrlc.gov)

[ALI, Anderson Level I]

	2001 "to" class									
			Open water	Urban	Barren	Forest	Grass/ shrub	Agricul- ture	Wetlands	lce/snow
		ALI	1	2	3	4	5	6	7	8
	Open water	1		12	13	14	15	16	17	18
6	Urban	2	21		23	24	25	26	27	28
class	Barren	3	31	32		34	35	36	37	38
, E	Forest	4	41	42	43		45	46	47	48
"fro	Grass/shrub	5	51	52	53	54		56	57	58
392	Agriculture	6	61	62	63	64	65		67	68
-	Wetland	7	71	72	73	74	75	76		78
	Ice/snow	8	81	82	83	84	85	86	87	

NLCD 1992/2001 Retrofit Land Cover Change Product

http://www.mrlc.gov/nlcdrlc.php

 Table 3.
 Change results matrix for the conterminous United States. Unchanged pixels are a percentage of all pixels, while changed pixels are a percentage of all changed pixels.

[%, percent]

					2001 "to	″ class				
		Open water (%)	Urban (%)	Barren (%)	Forest (%)	Grass/shrub (%)	Agriculture (%)	Wetlands (%)	lce/snow (%)	Row totals (%)
					Uncha	nged				
		5.03	4.86	1.13	25.22	34.48	21.79	4.48	0.02	97.01
					Chan	ged				
	Open water		0.06	0.49	0.15	0.60	0.46	0.87	0	2.63
ass	Urban	0.13		.02	.17	.12	.48	.13	0	1.05
n" c	Barren	.25	.04		.06	.34	.08	.06	.01	.84
"froi	Forest	.42	3.53	.99		23.09	10.31	2.46	0	40.80
992	Grass/shrub	1.30	1.54	.61	6.66		11.39	1.84	.12	23.46
-	Agriculture	2.60	3.00	.26	7.16	10.87		3.03	0	26.92
	Wetland	.70	.38	.09	.97	.96	1.13		0	4.23
	Ice/snow	0	.00	.02	0	.05	0	0		.07
	Column totals	5.40	8.55	2.48	15.17	36.03	23.85	8.39	.13	100.00

http://www.mrlc.gov/nlcd06 data.php

National Land Cover Database 2006 (NLCD2006)

Product Data Downloads

NOTE: NLCD2001 Version 2.0 products must be used in any comparison of NLCD2001 and NLCD2006 products.

Conterminous United States

<u>NLCD2006 Land Cover</u> (1.1Gb) The 2006 land cover layer for the conterminous United States for all pixels.

NLCD2006 Land Cover Change (99.5MB)

Land cover layer containing only those pixels identified as changed between NLCD2001 Land Cover Version 2.0 and NLCD2006 Land Cover products for the conterminous United States.

NLCD2006 Percent Developed Imperviousness (696MB)

An updated circa 2006 percent developed imperviousness estimate layer for the conterminous United States for all pixels.

NLCD2006 From - To Change Index (1.25Gb)

A raster layer identifying a from and to land cover class index value label for each pixel in the conterminous United States based on a matrix for all possible land cover class label change combinations.

Beyond NLCD...

Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record

Joseph O. Sexton ^{a,b,*}, Dean L Urban ^a, Michael J. Donohue ^a, Conghe Song ^c

* Nicholas School of the Environment, Duke University, Durham, NC, United States

^b Global Land Cover Facility, Department of Geographical Sciences, University of Maryland, College Park, MD, United States

⁶ Department of Geography, University of North Carolina, Chapel Hill, NC, United States

Fig. 5. Landcover change among generalized classes within the study area from 1985 to 2006.

Land use change in the Triangle

Credit: Joe Sexton (PhD '09) and Mike Donohue (MEM '08)

This week's lab exercise...

Encroaching development

1985

2005

Discrete change: change in type

- Iand cover conversion (deforestation, development)
- detection depends on how the types are defined

Continuous change: change in condition

- biomass accumulation
- changes in leaf area, canopy structure
- changes in fuel loads or understory density
- changes in species composition

Discrete change

Detection:

- Create <u>difference maps</u> from two time periods
- Recode the changes to make visual sense
 - forest → developed
 - ag → developed
 - $ag \rightarrow forest$
 - and so on ...
- The pattern of change is interesting:
 - where are the changes?
 - patch sizes?

(RAPCOE)		·····,	
The Reforestation produced by a reforestation and net offset is eq offset), less the and less any CC	n/Afforestation Project Carbon On-lin reforestation or an afforestation pro d afforestion are the same activity, t uivalent to the amount of carbon s amount of carbon estimated to hav 2 released elsewhere as a result of ti	The Estimator allows you to estimate the net carbo iect in the United States. For the purposes of t that of converting cropland and/or pasture to for equestered by the conversion to forest (gross been sequestered had no project occurred (ba his project occurring (leakage deduction).	on offs his too rest. Th carbo aseline
With this tool, r which gross offs (pre-project pla or verified (post wish to execute.	net offsets can be estimated for bot sets are not known and must be est nning) and (2) projects already un -project monitoring). Click the appro	h (1) proposed reforestation/afforestation proje imated from existing carbon stock accumulatio derway where the gross offsets have been m priate tab below to choose the net offset calcula	ects, fo n table easure tion yo
	Pre-project planning tool		
	The project planning tool	Post-project monitoring tool	

Reforestation Afforestation Project Carbon On-Line

Summary:

- Tally type per sample in each time period
- Construct transition matrix (Markov model):

Change in the triangle \rightarrow Development

1. Convert land cover maps into binary developed, notdeveloped maps

2. Subtract early date (1985) from later date (2005)

	2005						
1985	Developed (1)	Non-Developed (0)					
Developed (1)	0	-1					
Not-Developed (0)	1	0					

Measuring Change

Encroachment

Method 1:

Extend the boundaries of the SNHA's and tabulate the net gain/loss of developed area within a set proximity (e.g. 1km).

Then measure the mean of the developed gain/loss values within the adjacent areas.

Encroachment

Method 2:

Use focal analysis to extend the influence of developed gain/loss into the SNHA...

Mean value = 0.000331

Assignment: Discrete change

- For each method, indicate (e.g. via a map legend) the SNHAs with top 20% most encroaching development over the period of 1985 to 2005? Which comprise the lowest 20%?
- Do both approaches indicate the same SNHAs in the most encroached 20%?
- What drawbacks, if any, are there in using the Euclidean allocation approach?
- What drawbacks, if any, are there in using the focal statistic approach?
- A third approach involves creating 1km vector buffers from each SNHA polygon. What would be the major challenge in using this approach? Can this challenge be overcome? If so how? If not, why not.

Discrete vs. Continuous Change

- Discrete change, while dramatic, can miss subtle (continuous) changes in ecological condition
 - natural succession or disturbances
 - effects of management or restoration efforts
- Conservationists are often more interested in condition than type
 - measurement involves similar data collection methods
 - the analytic framework is slightly different

Continuous change: Lab Exercise

Evaluate forest quality (greenness) within SNHAs

- In which SNHAs are forests regenerating?
- Are there SNHAs where forests are declining?
- Are the new forests evergreen or deciduous?

Measuring Continuous Change

- Evaluate the change in greenness over time
 - Subtract 1985 NDVI from 2005
 - Positive values \rightarrow gain in greenness over time
 - Examine only forest pixels; change in greenness in other types are not interesting ecologically
 - Compare summer to summer, winter to winter
 - Positive values in summer difference \rightarrow increase in forest
 - Positive values in winter \rightarrow increase in evergreen only
 - Δ Summer Δ Winter \rightarrow increase in deciduous only?

Change in NDVI

- Isolate pixels that were forest in <u>either</u> 1985 or 2005.
 - Other areas will change in greenness, but we're not concerned
- Subtract 1985 NDVI from 2005 NDVI within those areas
 - Difference in summer NDVI \rightarrow All forest types
 - Difference in winter NDVI \rightarrow Evergreen only

Change in Summer NDVI

Change in Winter NDVI

Change vectors

Δ Summer NDVI - **Δ** Winter NDVI

Assignment: Continuous change

- Create maps showing changes in NDVI values for Umstead State Park and its surroundings
- Describe what the maps show...
 - ...in terms of forest gain/loss within the park boundaries vs. immediately surrounding it.
 - ...in terms of forest succession within the park boundaries vs. immediately surrounding it.

Assignment: Continuous change (cont'd)

- Create a map with two frames:
 - 1. Highlight two SNHA's: one "healthy", and another that has lost a lot of greenness from 1985-2005.

2. Highlight two SNHA's: one that has undergone succession, and another where increased greenness appears to be mostly from evergreens.

Predicting change...

- Agent based models (cellular automata)
 - SLEUTH/FUTURES
 - California Urban Futures model
- "Human" habitat models
 - Deforestation models