

NICHOLAS SCHOOL OF THE ENVIRONMENT AND EARTH SCIENCES

DUKE UNIVERSITY

ENVIRON 761: Monitoring & Change Detection

Instructor: John Fay

Land use change in the Triangle

Credit: Joe Sexton (PhD '09) and Mike Donohue (MEM '08)

This week's lab exercise...

Encroaching development

1985

2005

Discrete change: change in type

- Iand cover conversion (deforestation, development)
- detection depends on how the types are defined

Continuous change: change in condition

- biomass accumulation
- changes in leaf area, canopy structure
- changes in fuel loads or understory density
- changes in species composition

Discrete change

Detection:

- Create <u>difference maps</u> from two time periods
- Recode the changes to make visual sense
 - forest → developed
 - ag → developed
 - $ag \rightarrow forest$
 - and so on ...
- The pattern of change is interesting:
 - where are the changes?
 - patch sizes?

(RAPCOE)		·····,	
The Reforestation produced by a reforestation and net offset is eq offset), less the and less any CC	n/Afforestation Project Carbon On-lin reforestation or an afforestation pro d afforestion are the same activity, t uivalent to the amount of carbon s amount of carbon estimated to hav 2 released elsewhere as a result of ti	The Estimator allows you to estimate the net carbo iect in the United States. For the purposes of t that of converting cropland and/or pasture to for equestered by the conversion to forest (gross been sequestered had no project occurred (ba his project occurring (leakage deduction).	on offs his too rest. Th carbo aseline
With this tool, r which gross offs (pre-project pla or verified (post wish to execute.	net offsets can be estimated for bot sets are not known and must be est nning) and (2) projects already un -project monitoring). Click the appro	h (1) proposed reforestation/afforestation proje imated from existing carbon stock accumulatio derway where the gross offsets have been m priate tab below to choose the net offset calcula	ects, fo n table easure tion yo
	Pre-project planning tool		
	The project planning tool	Post-project monitoring tool	

Reforestation Afforestation Project Carbon On-Line

Summary:

- Tally type per sample in each time period
- Construct transition matrix (Markov model):

Change in the triangle \rightarrow Development

1. Convert land cover maps into binary developed, notdeveloped maps

2. Subtract early date (1985) from later date (2005)

	2005		
1985	Developed (1)	Non-Developed (0)	
Developed (1)	0	-1	
Not-Developed (0)	1	0	

Measuring Change

Encroachment

Method 1:

Extend the boundaries of the SNHA's and tabulate the net gain/loss of developed area within a set proximity (e.g. 1km).

Then measure the mean of the developed gain/loss values within the adjacent areas.

Encroachment

Method 2:

Use focal analysis to extend the influence of developed gain/loss into the SNHA...

Mean value = 0.000331

Assignment: Discrete change

- For each method, indicate (e.g. via a map legend) the SNHAs with top 20% most encroaching development over the period of 1985 to 2005? Which comprise the lowest 20%?
- Do both approaches indicate the same SNHAs in the most encroached 20%?
- What drawbacks, if any, are there in using the Euclidean allocation approach?
- What drawbacks, if any, are there in using the focal statistic approach?
- A third approach involves creating 1km vector buffers from each SNHA polygon. What would be the major challenge in using this approach? Can this challenge be overcome? If so how? If not, why not.

Discrete vs. Continuous Change

- Discrete change, while dramatic, can miss subtle (continuous) changes in ecological condition
 - natural succession or disturbances
 - effects of management or restoration efforts
- Conservationists are often more interested in condition than type
 - measurement involves similar data collection methods
 - the analytic framework is slightly different

Continuous change: Lab Exercise

Evaluate forest quality (greenness) within SNHAs

- In which SNHAs are forests regenerating?
- Are there SNHAs where forest are declining?
- Are the new forests evergreen or deciduous?

Measuring Continuous Change

- NDVI → Greenness
- Evaluate the change in greenness over time
 - Subtract 1985 NDVI from 2005
 - Positive values \rightarrow gain in greenness over time
 - Examine only forest pixels; change in greenness in other types are not interesting ecologically
 - Compare summer to summer, winter to winter
 - Positive values in summer difference \rightarrow increase in forest
 - Positive values in winter \rightarrow increase in evergreen only
 - Δ Summer Δ Winter \rightarrow increase in deciduous only?

Change in NDVI

- Isolate pixels that were forest in <u>either</u> 1985 or 2005.
 - Other areas will change in greenness, but we're not concerned
- Subtract 1985 NDVI from 2005 NDVI within those areas
 - Difference in summer NDVI \rightarrow All forest types
 - Difference in winter NDVI \rightarrow Evergreen only

Change in Summer NDVI

Change in Winter NDVI

Change vectors

Δ Summer NDVI - **Δ** Winter NDVI

Assignment: Continuous change

- Create maps showing changes in NDVI values for Umstead State Park and its surroundings
- Describe what the maps show...
 - ...in terms of forest gain/loss within the park boundaries vs. immediately surrounding it.
 - ...in terms of forest succession within the park boundaries vs. immediately surrounding it.

Assignment: Continuous change (cont'd)

- Create a map with two frames:
 - 1. Highlight two SNHA's: one "healthy", and another that has lost a lot of greenness from 1985-2005.

2. Highlight two SNHA's: one that has undergone succession, and another where increased greenness appears to be mostly from evergreens.

Predicting change...

- Agent based models (cellular automata)
 - SLEUTH
 - California Urban Futures model
- "Human" habitat models
 - Deforestation models